
CPG2 Programmer’s
Reference Manual

Page 1

CPG2 Programmer’s Manual

CPG2 Programmer’s
Reference Manual

Page 2

Contents 1000

Section 2 Service Functions

Data Fields 2100
Field Names and Field Definitions 2110
Arrays 2120
CPG internal Fields 2130
Storage Types 2140
Screen input Fields 2150
Temporary Storing of Data 2160
Temporary Storing of Data on Temporary Storage 2190

Flow Chart 2240
Indicators 2260

File Processing 2300
Data View Processing 2340

Programming Assistence 2400
Decision Tables 2410
Field Edition 2420
Structured Programming 2450
When 2470
Optimizing of the TWA Size 2500
Rules for the pseudo conversational programming 2550
Data Dictionary in the Programm 2600

Test debugging 2800
QDF Quick Debugging Facility 2810
Special Terminal Dump 2830

Restrictions 2900

Section 3 Program design

Syntax 3010
Mixed using of RPG like format and 3020
CPG2 format
Program Structure 3030
Options 3300
Files 3400
Data Division (Working Storage Section) 3500
Forms Division(Printer Control) 3600
Input Division (Syntax) 3700
Operations in the Procedure Division 3800
Syntax 3810
Output Division 3900

CPG2 Programmer’s
Reference Manual

Page 3

Section 4 Operations

Section 5 HL1 Programming

Section 6 HL1 Batch Programming

Error Messages during the Compilation 6900
Error Messages in the Assembly 6930
Error Messages for the Processing 6950

Section 7 Operation Codes

Overview of the Procedure Division 7000
CPG Screen Attributes 7020
CPG output Write Control Character 7030
Highest Value for a CPG program 7040
Temporary Storage of Data for CICS users 7050
Edit Codes for numerical Fields 7070
Syntax Rules 7300
Key Words in the Procedure Division 7400
Accessories 7500

Section 8 Examples

File Update 8005
File browse with READ-PAGE 8010
File modification program with UPDATE and WRITE 8015
File modification with EXCPT 8017
RRDS File with numeric Key Field 8020
ESDS File 8025
Add in a ESDS File 8030
Printing in the Line Mode 8035
Field editing with EDIT 8040
READ-BACK 8045
Update VSAM variable record length 8050
Temporary Storage Queuing 8060
Variable Cursor Position 8065
Variable Map Name 8075
TWA-LOAD and TWA-SAVE 8080
File maintenance, dialog oriented 8100
File maintenance, task oriented 8110
Convert Fields with CONVERT 8120

CPG2 Programmer’s
Reference Manual

Page 4

Lattwein information 1010

Address: Lattwein GmbH

Otto Brenner Strasse 25

52353 Dueren

Germany

Telephone: +49 2421 81051

Telefax: +49 2421 82127

Internet: http://www.lattwein.de

E-Mail: mailto:service@lattwein.de

Information:

A central telephone information-service is available to all users during normal working-
hours, which is intent on answering any questions, which have not been dealt with
properly within this manual.

Working time: 8.30 - 16.00 Hrs

CPG2 Programmer’s
Reference Manual

Page 5

Section 2 Service Functions 2000

Data Fields 2100

Field Names and Field Definitions 2110

An area in the Transaction Work Area (TWA) is assigned to each field in a CPG program. A field can be
defined explicitly or implicitly.

The explicit definition of fields is made in the data division.

If in the input division is described, from which positions of a data device a field should be read, an implicit
field definition takes place at the same time.

All fields stored in the TWA are either alphanumerical or packed numerical. Always if a field is defined,
CPG2 requires the following statements:

a) field name
b) field length
c) form (numerical or alphanumerical)
d) case numerical: number of decimal positions.

Field names can be up to 30 positions long. They must not contain empty signs (blanks). The first sign must
be a letter from A until Z.

Regulations for field names:

Without using Data Dictionary

It is recommended, to use field names with more than 6 positions only exceptionally, because the compiler
generates an internal name with more than 6 positions. Consequently the entry of data dictionary structures
and program external QSF masks becomes difficult with the use of long field names.

Using Data Dictionary

With the transaction QDDS (Quick Data Dictionary Standards) it is possible to use field names with a length
bigger than 6.

If a field name is described here, it gets an internal reference name with a length up to 6 places.

Once described in the standards, the long field name can be used almost everywhere in the application
development with CPG, especially in QSF-screens and List documents.

The $-(dollar-) sign is allowed at every position in the field name.

The sign sequence 'CPG' is reserved for the first three positions of a field name. Its application is only
allowed with the CPG-internal fields, indicated in section 2130.

CPG2 Programmer’s
Reference Manual

Page 6

Note for the array processing, that a limitation is also valid for the representation of array elements: The
indication consists from the name of the array and the index in brackets, and may be at most 7 positions
long.

The maximum length of an alphanumeric field is 256 bytes.
The maximum length of a numerical field is 8 bytes packed, that means 15 digits.

All fields are alphanumerical, if nothing else is indicated. Fields will be assigned as numerical via the
indication, that they possess 0 or more digits.

- OTTO 5. means that the field OTTO is alphanumerical and 5 positions long.
- HUGO 3 0. means that the field HUGO is numerical, 3 positions long and has zero digits.

Fields and arrays can be combined to groups or records via data structures and overlays in the TWA. If a
field, which was not yet defined in the data division, will be specified in the input division, it is implicitly
defined. CPG calculates the length of the field on the base of the indicated first and last position, and orders
the corresponding storage area in the TWA. If a certain number of decimal places is specified for the field,
(i.e.0 or more), it is treated by CPG as packed field. If the input data for a field will be indicated as binary or
in the unpacked form, so CPG changes them automatically into the packed form, before it is stored into the
corresponding field in the TWA.

In data structures, numerical fields are only allowed in packed form.

If a field has already been defined in the CPG program, with the same name explicitly or implicitly with
another field length, so a syntax error will be detected at the compilation time. If the field should be
numerical, a value of 0 or bigger must be entered for the number of decimal places. If the attributes defined
for the field are not compatible with the operation with which it is used, an error is also indicated.

Note the following instructions for field definitions:

All fields must be defined explicitly or implicitly somewhere in the program, in which they are used. (With
exception of the CPG-internal fields and UDATE and UTIME).

A field cannot be used in a manner, that contradicts to its defined attributes.

Regulations for field names:

Field names may be at most 30 positions long.The first sign of a field name must be an alpha (sign) or a
dollar sign. Field names can contain any special characters up from the second place. Field names, that
contain special characters (beside dollar), and/or arelonger than 6 positions, are changed into names of six
places length (CPxxxx).

Examples:

THIS-IS-A-VALID-FIELD-NAME right
THIS-IS-NOT-A-VALID-FIELD-NAME-FOR-CPG wrong (too long)
A*27+35=89:IS-NOT-GOOD:BUT right
7-MILES-BOOTS wrong (position 1 not alpha)
$$10 right
A-100 right

CPG2 Programmer’s
Reference Manual

Page 7

Arrays 2120

Arrays are groups of fields of same the length and the same type, that can be processed indicately for
example via a DO-loop.
Array definition

Arrays can only be defined in the data division in the form: Name, character of elements, *, length, digits.

Alphanumerical arrays will be preformatted with blanks, numerical ones with zeros.
In a CPG2 program a maximum of 80 arrays are supported.

Array Input / Output

Whole arrays or single fields with fixed index can be read or output. Variable indexes are not supported in
the input- and output division.

Array and Screen

Arrays will be processed like single fields in the output description. For the output on screen files, the
position of the first array element will be indicated. The following elements are indicated automatically in the
following screen lines. The screen has to be read analogously.

Array and record files / print output / field editi ng with EDIT - SELCT

For other files, for the output, always the last position of the last array element will be indicated to read the
area from the first up to the last byte of the array.

If whole arrays are output with an edit code, so the single fields are separated by two blanks (plus the length
of the edited field).

Regulations for array names:

For arrays processed as indicated, following regulations are valid:

The length of the array name + the length of the index name must be less than 6.

Examples:

A(I) right
A(ZAHL) right
FG(88) right

or:

The index name is one digit, the array name up to 27 positions long (a CP name will be generated for the
lengths 7 to 27 as well as for shorter array names, that contain special characters).

Examples:

MYARRAY(A) right
AR-2(K) right
MYARRAY(I2) wrong, index not one digit

CPG2 Programmer’s
Reference Manual

Page 8

Processing arrays

Following operations of the procedure division can be processed as indicated:

all numerical operations

CAB compare and branch
CAS compare and branch subroutine
CBS compare and branch subroutine
COMP compare
CONVT convert
DELC delete characters
DO loops
EDIT field edit
ELIM eliminate characters and replace by blanks
FILL fill an alpha field
IF if query
MOVE transfer right adjusted
MOVEA array transfer
MOVEL transfer left adjusted
MOVEN transfer from an alpha field into a numerical field
REPLC replace blanks by characters
SCAN search for a scanner
SELCT select a field

That means, in a valid operand of one of these operations, the name of an array can be indicated instead of
a field name. Following regulations are valid:

Array with fixed index

If an array with the name 'FGR' has been defined, an operation

- FGR(7) = X

causes that the value 'X' is added in the 7. element of the array 'FGR'. Note, that the whole length of the
entry must not be bigger than 7 positions. In this case, the name of the array can have at most 4 positions.

Array with variable index

If an array was defined with the name 'FGR', an operation

- FGR(N) = X

causes that the value X is transferred into the N-th. element of the array 'FGR', with which the field with the
name 'N' must contain an integer value between 1 and the number of elements of the array. Each other
value leads to the abnormal end of the program. The total length of the entry for the element name must not
be longer than 7 positions.

Array without index

If an array was defined with the name 'FGR', so an operation

- FGR = 0;

causes that all elements of this array are set to 0. If a second array with the name 'FG2' was defined, so the
operation

CPG2 Programmer’s
Reference Manual

Page 9

- FG2 = FGR

causes that all elements of the array 'FGR' will be transferred into the corresponding elements of the array
'FG2', if the character of the elements is equal for both arrays. Is one of the two arrays smaller than the
other, then only as much elements are transferred, as have been defined for the smaller array.

Note:

In the described form, only numerical values can be transferred between numerically defined fields and
arrays. For the transfer of alphanumeric values, different Move operations are disposable.

CPG internal Fields 2130

CPG internal fields are already defined by the compiler and must not be defined by the programmer.
Following fields are disposable:

CPGATR variable attribute (if QSF is not used)

Definition for screen outputs with the entry 'VAR'. The wished attribute will be entered into this one place
field.

CPGBZL indicator list

CPGBZL is a 100 place field, that contains the status of the indicators from 00 to 99. It can be used for
example to save the indicators before an exit to a subroutine.

CPGCOM Common Area.

This area can be used as temporary storage for program links and is filled and read with EDIT- and SELCT
operations.

CPGCSA Common System Area.

This area can be changed or queried via EDIT- and SELCT operations. The data in the CPGCSA is
available for all system users independent from the program or terminal. The length of a field corresponds to
the length of the Common Work Area, defined in the System Initialisation Table (DFHSIT). The maximum
length amounts to 3584 positions.

CPGCUR Variable cursor position (if QSF is not used)

Definition for screen outputs with the entry 'VAR'. The wished cursor position is entered into this 4-digit field.

CPGDID Variable printer name

The name of the printer is entered into this 4-digit field. If a variable printer was declared in the files division.

CPGDRC DL/I return code.

This area contains the DL/I return code after a DL/I call.

CPGEOJ End of job.

This four-digit numerical field enables to transfer a variable return code out of the batch program to VSE or
OS/390 that can be queried in the conditional job control.

CPG2 Programmer’s
Reference Manual

Page 10

CPGFIS Offset for file inputs.

This 5-digit numerical field contains the offset, if at the input record description was arranged, that the input
positions may be used variably. The content of the field CPGFIS will be added in this case to the indicated
input positions. (See example in chapter 8000)

CPGFRC File return code after file operations

For the programming of file operations, no switches are necessary. After the file operations, CPGFRC
contains the following codes which can be queried instead of switches:

DK Duplicate Key after READ on an AIX-file
DR Duplicate record after adding
EF End of File after READ, READ-BACK and SETLL
NC Not closed after CLOSE
NF Not found after CHAIN or CHECK, OPEN, CLOSE,
NO Not open after OPEN or CHECK
Blank if no peculiarity was determined. (No errors on last file operation)

CPGIFC Interface communication area

This 32 places field can store information for the CICS interfaces of the Central Routine Library. CPGIFC
can be processed with the operations EDIT and SELECT.

In connection with the operation IFC, the programmer himself can modify operations in the CICS interface.

CPGMCI Array index for cursor position (in a QSF map).

This 3-digit numerical field contains the index of the array, whose name can be found in the field CPGMCU.

CPGMCU Cursor position (in a QSF map)

This 6 digit alpha field contains the name of the field in which the cursor should be set. If this field is empty,
the cursor will be set into the field defined in QSF.

CPGMFI Array index for selector pen/screen input.

This 3 digit numerical field contains the index of an array element, that has been chosen with selector pen,
or in which the cursor stood during the screen input. (if you use CPG2..QSF).

CPGMFN 1. Field name for selector pen/screen input.

This field contains the name of the chosen field after the selector pen selection, as well as the name of the
field, in which the cursor stood during the screen input (if you use CPG2..QSF).

2. Restriction of the map output on particular lines.

$QV' can be set into this field and CPGMLC can be filled before a map output, like described below.

CPGMLC 1. Field position for selector pen/screen input.

This four digit alpha field contains in both first positions the line, and in the positions 3-4 the column of the
selected field (if you use CPG2..QSF).

2. From-line/to-line during the output of partial maps.

CPG2 Programmer’s
Reference Manual

Page 11

In order to restrict the map output on particular lines, you enter the from-line/to-line into the field before the
output. (CPGMLC = '0205': output line 2 to 5). At the same time, the field CPGMFN must be filled with '$QV'.

CPGMPF This two digit field contains the abbreviation of the last operated program function key.

CPGMRC This two-digit alphanumerical field has following content after a screen input: Either ' ' for
'nothing special', 'NI' for NO INPUT or 'IC' for 'invalid character'. IC will be set, if invalid characters or too
much signs on the left or on the right side of the decimal point are identified during the transfer from the
screen into a numerically defined field.

CPGNLS National Language Support.

CPGNLS contains a D for German installations or an E for English ones (according to customer
configuration).

CPGPGM Phase name from the options, eight digit alphanumerical.

CPGPIW content of the IFC.

CPGSIN System information (see instruction COMRG).

Enter COMRG CPGSIN to make advanced system information disposable for the program.

CPGSMN segment name and key feedback area.

This area contains the key feedback area after a DL/I query.

CPGTCA Task Control Area

The TWA of the program can be processed with EDIT and SELCT via this field. From position 1 to 100
stands the indicator list, the user fields begin from position 117. CPGTCA is at most 4 K big.

CPGTCT Terminal Control Table.

This area may be changed or queried with EDIT- and SELCT operations. The data in the CPGTCT are
disposed to the user of a particular terminal independent from the used program. The length of the field
corresponds to the 'User-Area-Length' defined during the generation of the terminal control table. The
maximum length is 255 positions, from which CPG uses the first 10 places internally. In the CPG 2 program
at most 245 positions of the TCT are usable.

CPGTDI Variable Transient Data Name.

The name of the destination will be entered into this 4-digit field, if a variable transient data processing has
been arranged in the files division.

CPGTID Terminal Identification.

Into this four digit field, the name of the terminal from the terminal control table will be disposed by the CPG
for queries in the program.

CPGTIO Terminal-I/O-Area.

This area can be queried directly via a 'SELCT' operation after a query of a program. It may be used to read
data together with the transaction identification. The Trans-Id is set in position 1 to 4 of the CPGTIO or from
4 to 7. The position depends on the way of the terminal input: either in an empty screen or in a formatted
field.

CPGTIM Time numerical.

CPG2 Programmer’s
Reference Manual

Page 12

This field contains the time in numerical (packed) form in a 6-digit field (HHMMSS) in hours, minutes and
seconds. This field can be used to calculate time intervals in the calculation description. The field becomes
actualised at the program start and with the operation TIME. The actualisation can also take place from
outside, if the field is in the Central Routine Library. If this is not wished, the field must be saved directly after
the operation TIME with help of a Z-ADD-Operation.

CPGTSN Variable Temporary Storage Name

The temporary storage name will be entered into this 8 digit field, if a variable temporary storage processing
has been arranged in the files division.

CPGVRL record length of a VSAM file with variable record length.

In this 5 digit numerical field the length of the read record is indicated after the reading operations. The field
can be used for the output, if the key word VAR is indicated additionally to ALG and ADD in the record
description. In this case, the length of the output record will be taken out of the field CPGVRL.

Before using internal fields, which guarantee a relation to particular areas of the TP CICS Interface, the
programmer should test, if the TP CICS Interface used by him disposes these areas.

Date and time 2134

The date format depends on entries in CPGSTH (standard header) and CPGURSIT (customers
configuration).

CPG disposes the following internal fields for date and time:

CPGDAI contains the day date in the form '0YYYYMMDDC'. (num).

This date form is practical in view of the millennium change because it is comparable and able to be sorted.

CPGDAT contains the date in the form '0DDMMYYYYC', that means with four places for the year.
CPGDAT can be edited with edit code 'Y'.

CPGTIM contains the actual time in the form 'OHHMMSSC'. CPGTIM as six digit numerical field can be
edited with the edit code Y. CPGTIM can be actualised in the program with the operation TIME.

UDATE contains the day date in the form: 'DD.MM.YY'. (alpha).

UDATEC contains the century in the form: 'YY' (alpha).

UDATEI contains the day date in the form: 'YYYYMMDD' (alpha) Purpose: See description CPGDAI.

UDAY contains the day of the day date: '0DDC' (numerical).

UMONTH contains the actual month: '0MMC' (numerical).

UTIME contains the time in the form 'HH.MMhrs'. (alpha).

UYEAR contains the actual year: '0YYC' (numerical).

Storage Types 2140

CPG2 Programmer’s
Reference Manual

Page 13

Alphanumerical Fields 2141

Alphanumerical fields can contain all printable and not printable characters. Each character covers a byte in
the storage. Alphanumerical fields will be initialised on blanks before the start of the processing.

Numerical Fields 2142

Numerical fields can only contain digits and eventually a minus sign. Numerical fields will always be stored
in packed form, that means that always two digits are stored in one byte. A half byte is reserved for the first
sign. Numerical fields are initialised on zero before the begin of the processing.

Data fields, with which calculation operations shall be processed, must always be defined numerically.

Of course, the output in unpacked form is also possible. In this case, every digit covers a byte. The first sign
will be stored together with the last character in the most right byte of the field. This can cause, that this
character will be changed into a letter during the output.

CPG gives to all unpacked numerical fields, if they are positive, automatically a first sign, that makes the last
character readable.

Note: If numerical fields are partially overlayed by other fields at the unpacked output, this automatism must
be switched off with the entry 'SIGN' in the OPTIONS card.

Binary 2143

Numerical fields can be output and read again binary. The binary output takes place with the entry of the key
word 'BIN' in the field description of the output division.

Example: - NUMBER 15 BIN.

Input fields are interpreted as binary, if 'B' or 'BIN' will be coded in the field description of the input division
before the positions.

Example: - B 11 15 0 NUMBER.

Fields, that are two bytes big, will be installed while the output for numerical fields up to 4 positions, and 4
bytes big binary fields for fields up to 9 positions.

No binary fields must be used for screen and printer inputs and outputs.

Logically packed Fields 2144

Another form of packed storing is the logical packing.

A logical packed field is a field, whose numerical content is packed and stored without first sign.

CPG2 Programmer’s
Reference Manual

Page 14

Example:

The storage of the character 4711 necessitates:

Unpacked 4 bytes F4 F7 F1 F1
Packed 3 bytes 04 71 1C
Logically packed 2 bytes 47 11

Data fields, that should be packed logically, may contain only positive numerical values. The logical packed
form is only valid for the storage in external storage. For the processing in the application program, the data
will be retransferred again in the packed form.

Numerical fields will be output logically packed, if the key word 'LOG' is coded in the field output.

- NUMBER 15 LOG

Numerical fields are read logically packed, if a 'L' is entered in front of the first input position.

- L 11 15 0 NUMBER

Unpacked numerical Field 2145

Numerical fields are always packed in the main memory (TCA). When read from the screen, a numerical
value gets therefore the letter 'F' for the zone internally in the last half byte.

If a numerical value from the main memory has to be output unpacked on disk, so the zone will always be
set to 'F'. For example the value 123 is then indicated on the disk as F1 F2 F3.

While reading from the disk, the zone does not change.

These regulations for the zone half byte of the packed field can be influenced with the OPTIONS parameter
SIGN.

The entry causes, that when reading either from the screen or from the disk, in principle the zone 'C' is
taken. At the output on disk, the zone does not change.

In this case, the character 123 is indicated on the disk as F1 F2 C3, so ‘12C‘.

Before C F C F
after screen input F F C C
after disk input C F C C
after disk output F F C F
OPTIONS without SIGN without SIGN SIGN SIGN

At numerical operations in the Procedure Division, the result field always gets the zone C, (for positive
results) independent from the options parameter.

CPG2 Programmer’s
Reference Manual

Page 15

Screen input Fields 2150

Contrary to input fields of other files, a screen input field will only be read with a MAP operation, if the field
has been modified on the screen before the operation. From the hardware this is told to the CICS interface
with a 'Modified Data Tag'. The 'Modified Data Tag' can also be set by the programmer with the edit code. In
these cases, the input field will also be read, if it has not been modified.

A field to be read will be identified with the tran sferred address via the input message of the
1.byte of this field, that means: only such fields, that were already output on the screen
(preformatted), can be read.

For numerical fields, the decimal adjust of the CPG will be processed as follows: Digits will be adjusted to
the defined input field from the first input decimal point or after the last valid digit.

If no digits are entered, so missing decimal places are inserted automatically as zero values. (See example
3 and 5). Too much input digits are ignored, as you see in the example 2. If more digits are entered than a
numerical field can take, the field will be adjusted from the (imaginary) decimal point. See also the examples
3 and 6 (next side).

Example: FELDA is defined numerically with 4 positions and 2 decimal places.
FELDB is defined numerically with 5 positions and 2 decimal places.

- 110 113 2 FIELDA;
- 209 213 2 FIELDB;

The fields 'FIELDA' and 'FIELDB' should be read from the screen; therefore the screen must have been
'initialised' before, that means to be pre formatted for the reception of the data. This takes place via the prior
output of a corresponding field on the screen.

This field must be edited with the field characteristic 'unprotected'.

Example field pos.mask input field content Number
1 A 115 "....." "12.34" 12.34 1
2 "1.2345" 1.23 2
3 "123 " 23.00 3
4 A 215 "......." "0.1234" 0.12 4
5 '123 ' 123.00 5
6 " " '1234567' 567.00 6
7 FELDA A 116 " , " " 4.25" 4.25 7
8 FELDA A 118 " 0 , CR" "12.34CR" 12.34- 8
9 FELDB A 215 " , " " 4.258" 4.25 9

10 FELDB A 217 " 0 , CR" " 12.34CR" 12,34- 10

Temporary Storing of Data 2160

The temporary storing can take place differently:

Temporary storing of data in the Transaction Work A rea (not recommended!).

CPG2 Programmer’s
Reference Manual

Page 16

The Transaction Work Area (TWA) will be reformatted with each program start. However the programmer
can enter the number of bytes of the TWA which have not to be reformatted in the options division behind
the key word 'TWA' up from the beginning.

With this form of temporary storage, note the regulations for the program links.

Temporary storing of data in the terminal user area

With help of the EDIT-operation, the programmer can store data in the TCT of the CICS interface which can
be queried again at any time with every program, but only from the same terminal. The query takes place
with help of a SELCT operation. The result field is called 'CPGTCT' in both cases, and has not to be defined
in the program.

Example:

Data store:

- -C; EDIT CPGTCT;
- -O; FIELD CPGTCT;
- - NUMF 20 PAC;

The numerical field 'NUMF' will be stored in the TCT in packed form. The last position of the field is set on
position 20 of the field 'CPGTCT'.

Data selection:

- -I; FIELD CPGTCT;
PAC 16 20 2 NUMF;

- -C; SELCT CPGTCT

The numerical field, stored in the positions 16-20, will be transferred into the field 'NUMF'. The field was
stored packed in the TCT. The field 'NUMF' will be defined with 2 decimal places.

The size of the field 'CPGTCT' will be fixed during the generation of the terminal table (TCT), in fact the
parameter, which describes the user area length, must be 10 bytes bigger than the highest output position
used in a program. So in the example above, position 20 + 10 bytes gives a TCT user area length of at least
30 bytes.

Temporary storing of data in the CSA. (not recomme nded!).

With the method described above for the TCT, data can also be stored temporarily in the common system
area (CSA). These data can be queried again at any time with every program from every terminal.
Therefore the example described above for the TCT is valid, if the field name 'CPGCSA' is set instead of
'CPGTCT'.

The size of the field 'CPGCSA' will be fixed during the generation of the initialisation table of the particular
TP monitor, and in fact the CSA size parameter must be at least 16 byte bigger than the highest output
position used in a program, because CPG uses the first 16 positions internally.

Temporary storing of data on the screen. (not recom mended!).

The screen can also be used as temporary storage. The fields to be read from the following program must
be output with an edit code containing the specification 'Modified-Data-Tag-On'.

CPG2 Programmer’s
Reference Manual

Page 17

Temporary storing and temporary storage queuing see chapter 2190.

Temporary storing of data on transient data.

Sequential output data can be stored temporarily on transient data. CPG uses transient data in each case
for the temporary storing of printer outputs. The programmer can also use this service for own applications.
However he should be able to estimate the effects on the performance. The programming is the same as for
record files. The corresponding entry in the file assignment is 'TRANSDT'.

Temporary storing in the common area (for command l evel programs).

The common area is 4080 bytes big. CPG can communicate via the field CPGCOM and the operations EDIT
and SELCT with the common area.

The length of the given common area can be determined with SELECT CPGPIW. It is positioned binary
packed in the positions 239-240.

Temporary Storage Usage 2190

For the temporary storage of data, the programmer can use an area in the main memory or in a connected
auxiliary storage if it is allowed by the TP monitor. CPG2 generates symbolic names for such storing areas.
Under this name, data becomes temporarily stored, looked up and released. The name is composed as
follows:

XXXXYYYY

XXXX = terminal identification. With the addition 'I' (for terminal-independent) in the FILE description, this
part is equal '****'.
YYYY = storage name from the FILES division.

Therefore, this area must be defined with a 4-places name in a file assignment statement. The device (last
entry) is called 'STORAGE'. The length of the reserved storage results from the entry for the record length.

Furthermore, CPG2 offers the possibility to keep the file name variable. At program execution time, the field
CPGTSN must then be filled with a valid storage name (of 8 positions). This processing should always be
used in case of non terminal tasks.

To avoid difficulties, which can arise through double given names, naming conventions, that the programmer
must use, should be introduced.

A temporary data storage should be released at the earliest possible moment, to reduce need of main
memory. For the input and output descriptions, the same regulations are valid as for record files.

Temporary Storage today is an area consisting of 1 or more records.

The programmer can determine with entries in the Data-Dictionary (recommended), or (in the record
description of the output division or already) in the file description of the files division, if the record should
rest in the main memory or should be stored on a disk, and if the data can be read only from the own
terminal or from all terminals.

In the output division the following entries behind the storage name are supported:

Blank The data can only be read by the own terminal and will be stored in the main memory.

“I“ The data can be read by all terminals and will be stored in the main memory (independent storage).

CPG2 Programmer’s
Reference Manual

Page 18

“A“ The data can only be read by the own terminal and will be stored in the auxiliary storage. (auxiliary
Storage)

In the files division one of the key words AUX for auxiliary storage and IND for independent storage may be
indicated in front of the unit STORAGE. These key words have the same effect like A and I in the output
division.

Entries in the output division have priority to the corresponding entries in the files division.

For temporary storage queuing, the storage must be deleted with the explicit instruction PURGE.

For older programs using Temporary Storage without queuing:

In the procedure division, temporary stored data can be read with a READ operation. So the programmer
can determine with the service function of the READ operation, if the area will be released or is used again
for later READ operations. Entry of the service function:

Blank The area will be released after reading.
'SAVe' The area will not be released after reading.

The area is released again in each case, if a new output takes place under the same name.

This technique is supported with files, that have an entry 'S' in column 16 for 'simulated queue' only (or entry
SIM or corresponding entry in the Data Dictionary).

Temporary Storage Queuing 2195

There are five processing possibilities:

1. Fill a queue

2. Change individual elements

3. Read sequentially

4. Read directly

5. Delete the whole queue

For temporary storage queuing a 'Q' must be entered into the file description in the Data-Dictionary
(recommended!) or into the file description of the files division (see chapter 3400).

For each queue, a CPGQxx field will be defined internally 5 places numerically. XX is the number of the file
assignment.

FIX must always be entered as record format, variable record lengths are not supported and are treated like
fixed record lengths.

Function 1 – Fill TS-queue:

- -I; FILE STOR DD

- -C; WRITE STOR

CPG2 Programmer’s
Reference Manual

Page 19

This example shows, how a queue must be filled.

In a queue may be stored at most 32.000 records, if it is possible for the TP monitor or the size of the batch
partition. The user is responsible for an infringement, there isn’t any error message.

After an output, the record number is available in the field CPGQxx.

Function 2 – Change individual elements:

- -D;
- NUMB 5 0
- -I;
- FILE STOR
- 1 100 REC;
- -C;
- NUMB = 4;
- NUMB READ STOR;
- IF CPGFRC = ‘ ‘;
- NUMB UPDATE STOR;
- ENDIF;

This example program shows, how single elements of a queue can be changed. If a selected element is not
found, EF (end of file) is set.

In this example, the fourth element will be changed, the output is not processed at 'Not found'.

Note: Contrary to the UPDATE function for files, the output area is generally deleted on blank before the
output on temporary storage. If the initial record should be kept for the output, it has to be transferred from
the input into the output.

Function 3 – read sequentially (numerical literal p ossible):

- 1 READ STOR; * 1.Record
- DO UNTIL CPGFRC = 'EF'; * following reco rds
- READ STOR;
- ENDDO;

This example program shows, how to read a queue sequentially.

With a READ operation without factor 1, the elements will be read sequentially one after the other. But if
you start to read a certain record (for example record 1), this record must be read with a defined and
existing key.

Function 4 – read directly:

- -D;
- KEY 5 0
- -C;
- KEY = 5;
- KEY READ STOR;

This example shows, how to read directly from a queue. The key, indicated in factor 1, has to be used to
read the corresponding record. Contrary to file operations, the programmer must ensure for the following

CPG2 Programmer’s
Reference Manual

Page 20

READs, that the wished record number is always contained in the key, because a direct processing is
always described with 'KEY READ STOR'. The operations CHAIN, RNDOM, SETLL etc. can not be used
here.

- -C;
- KEY = 0;
- DO UNTIL CPGFRC = 'EF';
- KEY = KEY + 1;
- KEY READ STOR;
- END;

This example shows, how you can read a whole queue directly.

Function 5 – delete a queue:

- PURGE STOR;

With the operation PURGE, the queue defined in factor 2 will be deleted.

While a storage queue is deleted, the full area will be released and added to the available dynamic storage
area.

There is no possibility to release only selected records. All records remain disposable until the area will be
deleted with PURGE.

Simulation of the Queuing 2198

With the entry S in the files division or (better) in the data dictionary, you reach, that a TS area can be
processed by the programmer according to the single record logic, but that a queue will be generated by the
CPG that consists of one record.

Example:

- FILE STOR UPD S FIX 256 STORAGE;

Service Functions

Flow Chart 2240

A flow chart can be listed right beside the compilation list of the CPG2 program, which shall simplify the
reading of the program also for the non professional.

The flow chart is made up in the following way:

CPG2 Programmer’s
Reference Manual

Page 21

Flow Chart PHASE XXXXXXX Headline like OPTIONS
SCREEN file assignment L3270
DISK file assignment DISK

DATE --------- 11 16 data division, TWA overlay
 DAY 11 12
 MONTH 13 14
 YEAR 15 16

INPUT ------------- DISK Input file INPUT (disk file)
 X 75 field X is 75 places long (ALPHA)
 Y 7,2 field Y is 7 places, 2 dec.
 FG 10 * 5 Array 10 * 5 places long

-------------------------- Beginning of the Procedure division

START -------I START DAY
 I Procedure division without branching
 !F! EDIT or SELCT operation
01 --- I Combine level for DO- and IF
 I groups (at DO, IF and END)
02 --- I
 02 -- I moved at ELSE, BREAK, CONTINUE
02 --- I
01 --- I
 /// ALL EXCPT
 I======UPRO EXSR subroutine or EXPR subroutine
 I
 I------OUT GOTO OUT or EXITP OUT
 INPUT /// Read file INPUT
 I
 < >-----START GOTO START if... (e.g. 15 on)
 I
 /// OUTPUT UPDATE, ADD (WRITE), OUTPUT
 I
 -------START GOTO START without condition

-------------------------- End of the Procedure divisions
OUTPUT ------------------ output file OUTPUT
 X 1 75 field X begins on pl. 1, is 75 long
 Y 76 7,2 field Y begins at 76 is NUM 7pl/2Dec
 FG 1 10 * 5 Array begins at 1 is 10*5 long

Note, that only the first statement of a line is considered in the flow chart. If the flow chart will be used, this
must be considered when coding.

Flow chart for overlays with ORG:

The instruction ORG offers the most flexible possibilities for the redefinition and overlay in the data division.
The flow chart indicates the up/to positions per field in the data division. When using the ORG instruction it
will be indicated: 1. The next up position, if no ORG would be coded and 2. the new up position as result of
the ORG instruction.

CPG2 Programmer’s
Reference Manual

Page 22

Example: Source Code Flow Chart
 F1 10 F1 1 10
 F2 5 * 10 F2 11 60
 F3 5 F3 61 65
 F4 5 F4 66 70
 F3 ORG ORG F3 71 61
 F5 5 F5 61 65
 F5 ORG ORG F5 66 61
 F6 5 F6 61 65
 ORG ORG 66 71
 F7 10 F7 71 80

List control 2245

Exceptions from the general syntax rules appear for the entries to adapt the compilation list:

/EJECT for the forms feed at any place
/NOLIST to suppress the listing
/LIST to terminate /NOLIST

For these commands there are no entries necessary in column 6 and they always begin on column 7.

Programmer Check List 2246

A programmer check list will be printed in addition to the compilation, that reminds the programmer of certain
conditions of the TP control program and shall give information for the most important program data.

The check list has following arrangement:

TITEL KD-NR US ER-ID 26.02.98
--- -------------------

PROGRAMMER CHECKLIST

 CONTAINS THE CICS PCT AN ENTRY WITH THE PARAMETE R PROGRAM=TSTO26 AND
 TWASIZE =00190 OR HIGHER ?
 CONTAINS THE CICS PPT AN ENTRY WITH THE PARAMETE R PROGRAM=TSTO26 ?
 CONTAINS THE CICS FCT AN ENTRY WITH THE FILENAME CPGKDN ?

PROGRAMVALUES
 PROGRAMSIZE = 544 BYTES (CIRCA)
 TWA SIZE = 190 BYTES
 TIOA SIZE = 4 BYTES
 DEFINED INDICATORS
 T1

 EXTERNAL PROGRAM RELATIONS

 EXIT: 'TRID'
 EXIT: PHASEX
 EXPR: PHASEY
 PROG: QPGMODULE
 EXHM: MODUL

CPG2 Programmer’s
Reference Manual

Page 23

The indication of the program size is a circa indication. The exact program size can be determined via
decimal calculation of the indicated address for 'CPGPND'.

The TWA size is the size of the necessary working storage. It will be calculated exactly. However, copy
books put in by the user, are not contained in the TWA size. The TWA size is calculated with the address at
CPGTND minus the length of the TCA, normally 256 bytes.

The Terminal IO Area (TIOA) may not be bigger than 4080 bytes. A bigger TIOA leads to program errors. If
the value exceeds the maximum, this can happen if many little fields are put out on the screen, the terminal
output is to devide in several smaller parts. To avoid problems with the TIOA, use QSF!

All indicators used in the program will be listed in the check list in sorted order.All external program relations
will be listed in the described form at the end of the check list. The programmer must ensure that no loops
emerge while using the EXITP or EXPR operation with the phase name in factor 2, because this could lead
to considerable performance losts.

Cross Reference 2247

A cross reference list can be printed in connection to the compilation. Therefore a XREF must be entered
into the OPTIONS parameter.

The cross reference list gives information, at which CPG statement numbers the following program elements
were used:

file names
indicators
Alphanumerical literals
data fields, arrays and tables
Numerical literals
Tags, internal and external subroutines
operations

Indicators 2260

The flow of a CPG program can be controlled with indicators. The indicators 01 to 99 can be set on or off by
the programmer. This processing mode is outdated and will not be described here completely.

Indicators (as described below) should be queried with the operation IF CONDITION.

Following indicators will be set at the processing time per program key by the user and can be queried in the
program:

P1, F1 or PF1 Program function key 1
P2, F2 or PF2 Program function key 2
P3, F3 or PF3 Program function key 3
P4, F4 or PF4 Program function key 4
P5, F5 or PF5 Program function key 5
P6, F6 or PF6 Program function key 6
P7, F7 or PF7 Program function key 7
P8, F8 or PF8 Program function key 8
P9, F9 or PF9 Program function key 9

PA, F10 or PF10 Program function key 10

CPG2 Programmer’s
Reference Manual

Page 24

PB, F11 or PF11 Program function key 11
PC, F12 or PF12 Program function key 12

Q1, F13 or PF13 Program function key 13
Q2, F14 or PF14 Program function key 14
Q3, F15 or PF15 Program function key 15
Q4, F16 or PF16 Program function key 16
Q5, F17 or PF17 Program function key 17
Q6, F18 or PF18 Program function key 18
Q7, F19 or PF19 Program function key 19
Q8, F20 or PF20 Program function key 20
Q9, F21 or PF21 Program function key 21
QA, F22 or PF22 Program function key 22
QB, F23 or PF23 Program function key 23
QC, F24 or PF24 Program function key 24

A1 or PA1 PA-key PA1 With the use of PA-keys,
A2 or PA2 PA-key PA2 no data will be read
A3 or PA3 PA-key PA3 from the screen.

DE data entry
SP Selector pen query / Cursor Select key (Pos. sel.)
CL o. CLEAR Delete key

Note: These keys can also be queried in the internal field CPGMPF in the program (2 places, so P1 up to
QC etc.).

These indicators as well as 'NI' and 'IC' (see below) remain also up to the next screen input at program
relations.

For the processing of disk files the following indicators will be set, if the corresponding condition appears.
The indicators can be queried by the programmer just after the input/output operation.

EF or EOF file end at Transient data
EF or EOF file end at sequential disk processing
EF or EOF file end or 'NOT FOUND' at Temporary Storage Queue processing
EF or EOF If there is no place left for the addition at Temporary Storage Queues.
EF or EOF file start at READ BACK (only VSAM)
EF or EOF If the indicated program is not in the PPT at program calls with the operation EXITP with
program name or EXPR.
EF or EOF If at program calls with EXITI either the called task or the asked screen are not available in the
corresponding CICS table.

DR Duplicate record for the addition.
DR Duplicate key for the READ of alternate index files.

At sequential disk processing the indicator 'EF' (End of file) will be set, if the last record of the file was read.
This indicator can also only be queried by the programmer.

For the addition of records to a ISAM- or VSAM file, the indicator 'DR' will be set, if a record with the same
key is already available. The indicator will be deleted at the next 'ADD' output.

If the error 'DR' appears while the sequential reading of a path of a VSAM file, it means, that several records
with the same key are available. If the last record of a group was read, the DR switch will be deleted.
Note: This file return code is also available for the program in the internal field CPGFRC.

CPG2 Programmer’s
Reference Manual

Page 25

After a screen input, the indicator 'IC'(Invalid Character) can be queried, which indicates, if a not numerical
sign (for example letter o for zero) has been found in the input for a numerical field.

However, the indicator must be queried just after the READ- or MAP(I) operation.

After a screen input, the indicator 'NI' (No Input) can be queried. If no data is read from the screen, the
indicator NI is set. The indicator must be queried just after the reading operation.

After an output with EXCPT, the indicator 'NO' (No output) can be queried. The indicator will be set, if the
EXCPT instruction does not lead to an output.

Is channel 12 reached at the list output, the indicator 'OF' for overflow will be set.

Furthermore, the UPSI indicators U1 to U8 are available.

The content of indicator '00' has following meaning:

X'F0' Sequential reading
X'08' EF (End of file) condition
X'04' DR (duplicate record) condition
X'02' CHAIN U

These values cannot be called in the program, but they can be seen in the Dump.

File Processing 2300

File name 2301

File names are not more than 8 places long. The first sign must be a letter from A to Z or a '$' (Dollar). The
following places can contain numbers and letters.

File names have to differ from field names. The check for a CPG error message can only be processed for
the first six places of the file name.

Up to 100 files can be defined in a program.

Keys 2304

A key field or key value in factor 1 of the Procedure division must normally be indicated for the operations
CHAIN, DELET, READ, READP,UPDAT, SETLL and WRITE.

An alphanumerical key value can be specified as a literal, closed in inverted commas. Such a literal can be
up to 8 bytes long. If an indicated literal is shorter than the key length defined for the file in the file
assignment, the rest will be formatted with X'00'.

If the key has numerical (that means packed) format, the key value can not be indicated as decimal literal.

If the key is a field defined in the TWA, the length of the field should correspond to the length defined for the
file in the file assignment. Is it shorter than the key length, the resting bytes will be formatted with X'00'. Is it
longer than the key length, it will be cut off (that means right adjusted bytes are ignored).

CPG2 Programmer’s
Reference Manual

Page 26

If files are processed with key fields in the packed decimal format, they must be processed with attention.
For the IBM hardware the hexadecimal values 'C' and 'F' are valid for the processing of numerical fields as a
positive sign. This can lead to an apparent not finding of the record, if the sign 'F' is coded and a field with
the sign 'C' is specified in the program. The sign of the key field can be rectified with the MLLZO operation.

IF the sign of the record key in the file is a 'C' and in the program field a 'F' is indicated (for example if it was
read from a screen into a numerical field), the sign of the program field can be conversed into a 'C' with help
of a Z-ADD operation.

Assembled key fields can be structured with help of the EDIT function or per definition of overlay fields or
with data structures.

Sequential or random access 2306

A DISK file defined in a CPG program, can either be processed in random access mode (that means that a
special key is indicated for every read record) or sequentially. The effect of the CPG2 file operations
depends mostly on the file processing mode.

At the beginning of a transaction is assumed ,that all DISK files defined for the program should be
processed in random access mode.The file operations supported in this mode are CHAIN, WRITE, UPDAT,
DELET, EXCPT and RNDOM.

If a READ-, READP- or READB operation is processed for a DISK file, the sequential processing mode for
this file will be set automatically.

In this mode, the file operations READ, READP, READB, SETLL are supported. (CHAIN is also supported,
but works as SETLL when used in the sequential mode.)

If a file has been changed into the sequential mode, it rests there, until the processing of a RNDOM
operation for this file. This causes, that the file is switched to random access mode again.

File Operations in the sequential access 2307

The sequential processing of a DISK file is started with the processing of a READ-, READB-, or READP
operation.

The file rests in the sequential mode, until the random processing mode will be reset for the transaction with
help of a RNDOM operation.

These read operations serve for the sequential processing of a whole file or several parts of a file (random-,
generic processing or scanning).

With the READB operation, a VSAM-file will be processed backwards in key sequence (that means in
inverted key sequence).

The key value serves only to the positioning of the file for the reading of the first record, when the sequential
processing is started. At a READ- or READP operation is this the first record in the file , whose key is equal
or bigger than the indicated key. At a READB operation, this is the record, whose key is equal to the
specified key. If the key value is bigger than the one of the last record in the file (READ, READP) or smaller
than the one of the first record in the file (READB), so the file end indicator is 'EF' set. This one must be
queried just after the read operation.

CPG2 Programmer’s
Reference Manual

Page 27

If the sequential processing is started, all following read operations read the following record in the file . This
happens without consideration for the really indicated key value. However, the entry for the key field must be
made(not for Batch programs).

If the file end is determined, the EF indicator is set, and the input description for the file will not be executed.
The program will continue with the next instruction in the Procedure Divisions after the READ operation. If
further sequential read operations are processed for the file, no records will be read and the EF indicator will
be set.

For VSAM, the EF indicator must absolutely be queried. A further READ leads to a system error message.

VSAM Alternate Indices 2315

A VSAM file can be read with an alternate key field. This reading mode with alternate keys needs another
entry in the file table (FCT).

If a record is added to the base cluster and if an alternate key (unique) already exists, the indicator DR (
duplicate record) is set.

The 'DR' indicator is set, if a file is read with no clear key.

For a following reading with unique key, the DR indicator is set off.

VSAM-ESDS/RRDS 2316

ESDS- and RRDS files will be addressed via the relative byte address (RBA) or the relative record number.
For the access, the RBA must be disposable as binary numerical field in the length 9 or as four places
alphafield.

If a numerical key field is entered for a file access, the binary edit takes place automatically. If an alpha key
is entered, the programmer is responsible for the binary edition (compare example 5-7, chapter 8000)

VSAM Files in entry sequence 2317

Files in entry sequence (also called sequential input files) are supported. If records are added to a file in
entry sequence, they will be added at the end of the file. A key for an EXCPT or UPDAT operation will be
ignored. If a record is to be read, the relative byte address (RBA)of the record must be indicated as key.
The RBA will be calculated as sum of the bytes of all records of the file already read. This is only possible for
records with fixed length.

In the file assignment, a 'R' or 'RBA' must be coded to define the relative byte addressing.

To guarantee, that the added records will really be stored on the disk, the processed record should be read
with a CHAIN operation after an ADD or WRITE. (By the operation CHAIN, the VSAM CI will be written to
the file.) The field CPGKxx will be indicated as key, whereby xx stands for the position of the file in the files
division.

Data View Processing 2340

CPG2 Programmer’s
Reference Manual

Page 28

Data View Definition 2341

A data view is a composition of data for a determined problem.

A view can be composed as wished from fields and records from different files. The logic of a view differs
from other storage forms because all of its elements can serve as key field.

Realistation of a Data View 2342

In relational data bases a data view is created online and rests in the main storage during the processing.

To simulate this way of processing, following way can be chosen: With a CPG2- or CPG3 Query program, a
data view will be produced and stored on the file CPGWKV. The exact steps are described in chapter 7500.

The view will be loaded from the file into the main storage only if it is processed in a program. The loaded
view rests in the main storage until the next Shut-Down of the TP monitor.

The produced view has the form of a table with the particularity, that every column of the table can serve as
a key.

Processing of Data Views 2343

Note for the processing of data views with CPG:

A file description must be coded for the view. TABLE must be indicated as device, the sum of the fields of
the table as record length and the maximum length of the possible key fields as key length.

A data view is processed similar to a file; all fields to be read from the table (especially all key fields), must
be declared in the input descriptions under the name of the table.

The view is read with the instruction FIND. Factor 1 contains the key element, factor 2 the name of the view
(up to four places).
An indicator for the comparison for equality indicates, if the search argument from factor 1 has been found in
the view. If the indicator is omitted, the field CPGFRC contains 'EF' if no matching element has been found
for the indicated key.
If during the processing should be returned to the beginning of the table, the sequential processing of the
view will be ended with the operation RANDOM. (If an element, searched with FIND was not found, the
cursor returns automatically to the beginning of the table.)

Example:

A view is created with data of the article file and the customer file.

Both files have only one key each: The article number and customer number. These keys are called 'primary
key(s)' in the following.

In the created view, the data may not only be looked up for the primary keys, but also for all others, in the
following indicated as 'secondary keys'. Examples for such secondary keys are postcode, first position of the
postcode or agent number.
When creating the view must be considered, how much 'columns' the generated table should have. Note for
the use of the view processing, that the view contains the primary keys of the files of whose data the view is
composed. So is assured, that all data can be CHAINED after a successful FIND, that are related to the
view. Compare also example 17, chapter 8.

CPG2 Programmer’s
Reference Manual

Page 29

Programming Assistance 2400

Decision Tables 2410

CPG2 enables the direct processing of decision tables in the Procedure Division.

With the operation BEGDT, you may switch over to the decision table logic and to the fixed RPG format
instead of the CPG2 syntax.

A decision table is not interrupted with the CPG2 statements, and terminated with the operation ENDDT.

A decision table consist in the upper part of conditions, and in the part below of actions. All conditions as
well as the actions of a decision table must follow each other directly.

The operation code '-----' from column 28 to 32 indicates, that the conditions end here and the actions begin.

The columns 43 to 74 contain the connection list. Possible entries are in the condition part for each available
column:

Y for 'YES' or condition fulfilled,
N for 'NO' or condition not fulfilled,
BLANK for: condition is not decisive.

Possible entries for actions for each available column are:

Blank Action will not be executed,
Not blank Action will be executed, if all conditions standing vertically above in the same

column are fulfilled or not, depending on the entry (N).

Formular description.

General entries:

Column 6 'C' must be entered.

Column 7-17 rests free

Column 43-74 Connection list (see above).

Conditions.

Column 18-27 contains a valid field name, the name of an array element (FG,I) or a literal.

Column 33-42 contains a valid field name, the name of an array element (FG,I) or a literal.

Column 28-32 Operation key. Valid entries are:

CPG2 Programmer’s
Reference Manual

Page 30

> or 'HIGH' bigger than factor 1 is bigger than factor 2.

< or 'LOW ' smaller than factor 1 is smaller than factor 2.

= or 'EQUAL ' equal. factor 1 is equal factor 2.

Note: For all comparing operations, factor 1 and 2 must both be defined either numerically or
alphanumerically.

Actions.

Column 18-27 rests free.

Column 28-32 Operation key. Valid entries are :

GOTO Branch to.
EXSR Execute subroutine
EXCPT Output

However, no second decision table can be called with EXSR from a decision table.

Example.

A customer file will be processed sequentially: Thereby, all customers whose turn over is more than 10000
DM, should be indicated on a screen and whose debit balance is higher than the turn over or whose debit
balance is higher than their overdraft limit. All other customers will not be displayed.

- CONTIN.
- READ SCREEN.
- NREAD.
- READ CUSFIL.

- LABEL BEGDT
C REVENU > 10.000 YY
C OPENV > REVENU Y
C OPENV > CREDIT Y
C OPENV > 10.000 Y
C -----
C EXSR CHECK X
C EXCPT XXX
C GOTO CONTIN XXX
C GOTO NREAD X
- ENDDT

Field Edition 2420

CPG offers the possibility, to edit fields via the Output division. With the operation MOVE only up to 8 bytes
can be transferred into a field as literal, with the operation '=' 24 places.

With the operation EDIT, every alphanumerical field can be edited in its whole length like an output record.
The result field of the operation contains the name of a field, whose edition is described in the Output
Division (see operation code EDIT).

CPG2 Programmer’s
Reference Manual

Page 31

Example:

DATA DIVISION
 LINE 70
PROCEDURE DIVISION
 EDIT LINE
OUTPUT DIVISION
 FIELD LINE
 CUSNO 7
 NAME 33
 CITY 55
 REVENU 70 ' . . 0 , -'; * edited with pattern

Inversed with the operation SELECT, several fields can be taken out of the edited field. In the SELCT
operation the name of the field is described in the Input Division. In the Input Division is described which
parts of the field are to be moved into other fields.

Example:

INPUT DIVISION;
 FIELD LINE
 1 7 CUSNO
 8 33 NAME
 38 55 CITY
PROCEDURE DIVISION;
 SELECT LINE

After the execution of the operation, the field 'CUSNO' gets the bytes 1 to 7, the field 'NAME' the bytes 8 to
33 and the field 'CITY' the bytes 38 to 55 of the field 'LINE'.

Field Edition with TYPE 2425

To select different structures from the same field, a select type can be indicated with the key word TYPE.

Example for the Input Division (output analogous):

- -I. FIELD CPGCOM TYPE PROG1
- PACKED 1 4 0 CUSNO;
- 5 34 CISTMR
- FIELD CPGCOM TYPE PROG2
- 1 20 PARAM

- -C.
- SELECT CPGCOM TYPE PROG2

In the example, a CPG program works with program relations together with several other programs. The
data exchange is made via the Common Area. The SELECT instruction from the example above applies to
the Common Area of the program 2, which has another construction than for example the communication
area of program 1.

Note:

In the program code of the input and output division, the different types of a field edition must be coded
without interruption by descriptions for other fields or files.

CPG2 Programmer’s
Reference Manual

Page 32

Structured Programming 2450

CPG2 offers the following operations for the structured programming :

BREAK (terminate a DO loop or all DO loops)

CAS (compare and branch into a subroutine)

CONTINUE (interrupt a specified loop processing)

DO (execute)

DO UNTIL (execute..up to)

DO WHILE (execute..during)

ELSE (other..execute)

END (end)

ENDDO (DO end)

END-EVALUATE

ENDIF (IF end)

EVALUATE (execute just one of several alternatives)

IF (if..then)

WHEN (if..then in an EVALUATE statement group)

The structurizing operations DO, IF, EVALUATE and CAS always indicate the beginning of a statement,
which will be terminated with an END instruction.

As comparing operators in DO-, IF- and WHEN queries can be set:

'-- ------'
' Operator ' Meaning '
'----------'--------------------------------------- ------'
' > GT ' factor 1 is higher than factor 2 '
' < LT ' factor 1 is less than factor 2 '
' = EQ ' factor 1 is equal factor 2 '
' >< <> NE ' factor 1 is not equal factor 2 '
' >= GE ' factor 1 is higher or equal factor 2 '
' <= LE ' factor 1 is smaller or equal factor 2 '
'-- ------'

Example:

DO WHILE ERROR = ' '
IF WERT1 > WERT2

:
END

END

CPG2 Programmer’s
Reference Manual

Page 33

If a DO group contains another complete DO- or IF group, it is called a nested DO group. In the example,
the nesting depth is 2, at most 40 nested groups are supported by the CPG.

A CPG program can contain at most 999 DO- and IF instructions.

AND linking 2453

With the logical linking, several conditions should be checked in one program step. The logical linking with
AND is supported for the operations IF, DO and WHEN.

(See chapter operations - IF instruction and example 26)

BREAK Operation 2455

The operation BREAK terminates the actual DO-, DO UNTIL- or DO WHILE-loop and branches behind the
affilated END statement. BREAK ALL branches behind the END of the outermost DO loop.

CONTINUE Operation 2457

The operation CONTINUE interrupts the processing of the actual DO-, DO UNTIL- or DO WHILE loop.
CONTINUE leaves the loop before the END statement and branches back to the loop condition. The
statements between CONTINUE and END are not processed, but the loop will continue according to the
loop condition.

DO Operation 2460

Example: DO FROM X TO Y WITH I

The DO operation works as follows:

For DO, the starting value is stored into the index at first.

The index is compared to the limit value. If the index is higher than the limit value, the program control
branches to the statement that follows the corresponding END.

If the index is lower or equal to the limit value, the operations between the DO and the corresponding END
will be processed.

In the END instruction of the DO group, the increment of the loop will be added to the index field. (the
increment is normally equal 1, but can also be indicated as positive number after the ENDDO instruction.)
Afterwards, the program control branches back to the corresponding DO and compares at new the index
value and the limit value.

To terminate a DO loop, the limit value can be changed within a loop. An index can not be changed. The
loop interruption is also possible with the operations BREAK and CONTINUE.

At the end of the loop, the index value is bigger than the limit value.For a loop, that runs from 1 to 12 (with
the increment of 1 per loop processing), the index after the processing is equal 13. A DO group ends with

CPG2 Programmer’s
Reference Manual

Page 34

the instruction END or ENDDO. If an increment value is indicated for the loop index, the operation ENDDO
must be chosen.

DO UNTIL Operation 2461

The operation DO UNTIL works as follows:

The statements of the DO group will be executed as long as the indicated condition is fulfilled. The condition
will be checked after every processing of the DO group. If the condition is fulfilled, the loop will not be
processed, but it is branched to the statement, which follows after the corresponding END operation.

The condition for the processing of the loop can consist of several logically linked conditions. Therefore the
operators AND and OR are available.

If the condition should not be checked at the first execution of the loop, the service function '1' is appended
at the DO UNTIL statement.

DO WHILE Operation 2462

The operation DO WHILE works as follows:

The statements of the DO group will be executed as long as the indicated condition is fulfilled. After each
processing, the condition will be checked at new. If the condition is fulfilled, the loop will be processed as
specified, otherwise is branched to the statement that follows after the corresponding END operation.

The condition for the processing of the loop can consist of several logically linked conditions. Therefore the
operators AND and OR are available.

ELSE Operation 2463

An ELSE operation indicates the beginning of the operations, which are executed, if the check of the
corresponding IF operation does not apply.

The operation ELSE is always a separate statement in the CPG.

END Operation 2464

The operation END must finish every DO- and IF group.

If in a DO loop the increment value should be unequal 1, it can be indicated as factor 2 of the operation
ENDDO as a numeric literal witha value greater equal 1.

For the documentation, also ENDIF or ENDDO can be programmed instead of END.

EVALUATE Operation 2465

The EVALUATE operation is chosen, if (at most) one of several alternatives should be executed.

CPG2 Programmer’s
Reference Manual

Page 35

'EVALUATE' must be indicated as operation term. The alternatives will be distinguished with 'WHEN' in the
following lines. The factors for the conditions can contain numerical or alphanumerical fields, field names or
array elements. If a condition is fulfilled, the following instructions will be processed. Afterwards, the evaluate
instruction ends and the program will continue after the 'END-EVALUATE'.

The condition 'WHEN OTHER' is fulfilled, if none of the WHEN instructions before applied. In this case, the
accompanying instructions will be executed and the EVALUATE is finished.

IF operation 2466

The IF operation works as follows:

Both factors of the comparison must be of the same type. They contain either an alphanumerical or
numerical literal, a field or an array element. If the relation between factor 1 and factor 2 is not fulfilled,the
program control branches to the statement, that follows after the corresponding END or ELSE instruction.

An END description must be entered to terminate an IF operation.

If an ELSE description follows an IF description, the END instruction must be entered after the ELSE
description and not after the IF description.

IF CONDITION 2467

The IF CONDITION works as follows:

Only indicators and other switches can be queried. The queried condition can exist from up to three
indicators that are logically linked with AND.

If the condition is fulfilled, those statements are executed, that are coded between the IF and the next END
or ELSE. If the condition is not fulfilled, the statements behind the corresponding END or ELSE are
executed.

OR Connection 2468

With the boolean connection, several conditions can be checked in one program step. The logical OR
connection is supported for the operations IF, DO and WHEN.

(See also chapter operations – IF instruction and example 26)

WHEN 2470

WHEN works as follows:

The WHEN operation indicates a condition. If it is fulfilled, all following instructions will be executed up to the
next WHEN or up to the END-EVALUATE.

CPG2 Programmer’s
Reference Manual

Page 36

WHEN OTHER 2471

WHEN OTHER is the 'ELSE' branch of the multiple alternative (EVALUATE):

If there was none of the WHEN conditions before fulfilled, the instructions of the WHEN OTHER group (up
to the END-EVALUATE) will be executed.

WHEN OTHER is (optionally) the last condition query in every EVALUATE group.

Boolean Connection of IF, DO and WHEN Operations 24 75

DO, IF and WHEN operations can be logically linked with the boolean operators OR and AND.

1. Or connection with OR at the IF operation

The statements up to the next END or ELSE will be executed, if at least one of the IF conditions is fulfilled. If
none of the conditions is fulfilled, it is branched behind the next END or ELSE.

2. Or connection with OR for the WHEN operation

The statements up to the next WHEN instruction will be processed, if one or both WHEN conditions are
fulfilled. If no condition is fulfilled, the program will continue at the next WHEN operation or behind the END-
EVALUATE.

3. Or connection with OR for the DO UNTIL / DO WHILE operation

The statements up to the next END will be executed, if at least one of the DO conditions is fulfilled. If none of
the conditions is fulfilled, it is branched behind the next END.

4. And connection with AND for the IF operation

The statements up to the next END or ELSE will be executed, if all IF conditions are fulfilled. If only one of
the conditions is not fulfilled, it is branched behind the next END or ELSE.

5. And connection with AND for the WHEN operation

The statements up to the next WHEN instruction will be processed, if both WHEN conditions are fulfilled. If
one of them or both are not fulfilled, the program will be continued at the next WHEN operation or behind the
END-EVALUATE.

6. And connection with AND for the DO UNTIL / DO WHILE operation

The statements up to the next END will be executed, if all DO conditions are fulfilled. If only one of the
conditions is not filled, it is branched behind the next END.

OR and AND can be used mixed. Thereby applies, that AND bounds more than OR.

Always only one END (IF) belongs to the linked IF conditions, always only one END (DO) to the linked DO
conditions. The operation WHEN is not terminated with END.

CPG2 Programmer’s
Reference Manual

Page 37

Data Structures 2477

CPG allowes to determine an area in the storage as well as the installation of fields - called subfields –
within this areas. This area in the storage is called data structure. A data structure can be used to

describe the internal area several times with the use of different data forms,

calculate with a field and change its content,

divide a field into subfields, without using MOVE or MOVEL instructions,

describe a data structure and its subfields in the same way as a record is defined,

group not connected data into connected internal storage areas.

Data structure instructions are described in the Input Division as follows:

- FILE name DS (length)

Following rules have to be considered for the specification of the data structure instructions

the data structure name must be a valid symbolic name, at most 30 places long. It can be used
everywhere, where an alphanumerical field is allowed.

All entries for a data structure and its subfields must appear together; they cannot be mixed with
entries for other data structures.

Subfields are defining for the data structure; therefore subfields must not be part of different data
structures at the same time.

The length of a data structure can be as follows:

The length, indicated in the input field descriptions, if the data structure name is an input field name.
The highest to-place of a subfield within a data structure, if the data structure name is no input field.
The length that can optionally be indicated in the instruction described above in the Input Division
The length of the data structure is determined with the first instruction in the program, that defines a
length of the just described types. Following different length indications are not valid.

A data structure and a subfield of a data structure cannot have the same name.

If a SELCT operation is used for a data structure, the SELCT input descriptions must be coded before the
data structure descriptions.

If a field is defined in a data structure, it must not be subdefined in the Data Division.

Data Structure Subfield Descriptions 2480

The subfields of a program described in the data structure must follow just after the data structure
instruction, to which they belong. The syntax is the same as for other field inputs.

CPG2 Programmer’s
Reference Manual

Page 38

Use of a data structure, to define subfields within a field:

- FILE INPUT
- 3 18 PARTNO
- 19 29 NAME
- 30 40 PATNO
- 41 61 DR
- FILE PARTNO DS; 1 4 MFG
- 5 10 DRUG
- 11 13 STRNTH
- PAC 14 16 0 COUNT

The data structure subfields can be addressed with the name PARTNO or with the subfield names MFG,
DRUG, STRNTH or COUNT.

Use of a data structure to group fields:

- FILE INPUT
- 3 10 PARTNO
- 11 16 0 QTY
- 17 20 TYPE
- 21 21 CODE
- 22 25 LOCATN
- FILE PRTKEY DS
- 1 4 LOCATN
- 5 12 PARTNO
- 13 16 TYPE

If a data structure is used to group fields, fields from places on the input record that are not nearby can be
grouped toghether. With the data structure name and/or the individual subfield names, this area can be
addressed.

For the moment, at most 500 entries can be made in the data structure table. An extension is possible. See
Copy CPG*CDTB. (* = Release suffix).

TWA Overlay 2485

Overlay fields can also be defined. An overlay field is a field, which is separated in further fields. It is defined
in the Data Division as an array, but '0' has to be indicated as number of the elements.

Overlay fields can be numerical or alphanumerical.

The definitions of the fields, by which the area should be structured, must follow directly after the
specification of an overlay field. These are defined as ordinary fields or arrays.

An overlay field can also contain further overlays.

Note, that enough fields must be defined to fill the whole defined area for an overlay field. The block diagram
can be used as control. To be able to use the block diagram, only one field definition should be coded per
line.

Example:

- ANSCHR 0 * 60; NAME 20; ORT 20; STR 20;

(In this example, there will be no usable block diagram, because the block diagram can only be printed for
the first statement in a line.)

CPG2 Programmer’s
Reference Manual

Page 39

The three fields NAME, ORT, STR can can be called with the common name 'ANSCHR' caused by the
overlay; while reading the field ANSCHR, also the fields NAME, ORT and STR will be filled.

For numerical fields is to note for the overlay, that these are stored internally in packed form.

Selector Pen Selection 2490

When reading into the screen, it is possible to choose only a determined selected field. This selection
happens with the tap of the selector pen or if you set the cursor onto the chosen field and push the button
'pos sel' for the selection (for positions selection).

After this so called selector pen selection, in the program

the switch SP is set
the 6 places alphanumerical field CPGMFN is filled with the name
of the chosen field (when using QSF)
the 3 places numerical field CPGMFI is filled with the index of the
chosen element, if the chosen field was an array (when using QSF)

Note the following for the selector pen selection :

Every selector pen selectable field must have a blank in the first byte.

Selector pen selectable fields and fields, for which the attribute 'Modified data Tag' is set, may not be at the
same time in a map.

This would lead to errors, because the 'Modified Data Tag' works in the same way as the selector pen
selection internally.

Cursor Selection 2495

The selector pen selection has lost its importance. Nowadays, such selections can be reached with a simple
cursor positioning.

The internal fields CPGMFN and CPGMFI are filled at every screen input.

CPGMFN contains the field name, in which the cursor stands.

CPGMFI contains the index of the array elements, if the cursor stands in an array.

Optimizing of the TWA Size 2500

The TWA size will be minimized by the CPG. Fields, that are defined in the Input Division (implicitly), will
not be defined in the TWA, if they are processed neither in the Procedure Division, nor in the Output
Division.

The optimizing function will not be activated for fields, which were defined explicitly in the Data Division.

The optimizing function will also not apply for the data structure subfields. The not optimized fields will be
marked internally as 'used'; data structure subfields are also always 'used'.

The optimizing can be canceled with the Options Parameter DEF for define.

CPG2 Programmer’s
Reference Manual

Page 40

Rules for the pseudo conversational Programming 255 0

The clear key or another program function for the program end must be queried by the programmer.

For the transaction oriented program call, the operation EXITT is the appropriate EXIT operation.

The screen data will be transferred into the program with the operation MAP.

The data of the TWA (Transaction Work Area) are not available after the task end. The relevant data for the
program must be stored temporarily (for example into a Temporary Storage Queue) and read into the
program at the start of the next task.

Consider, if these temporary storage areas should be deleted at the end of the application.

The VSAM strings are released at the end of the task. This is to note for example, if a VSAM file is to be
read sequentially.

Data Dictionary in the Files Division 2605

Data Dictionary is always attracted in the file description, if files are described incompletely in the Source
Code. The description of the record type ' ' (2 blanks) is adopted in the program.

Like in the other divisions, the key words DD (for Data Dictionary) and TYPE (for the record type) can here
be indicated here to choose different file descriptions.

Application examples:

- Choice between input, output and update file in the Batch
- Choice between physical file and HL1 dataset

Coding:

 FILE KUNDEN DD TYPE HD
 FILE KUNDEN DD TYPE HD INPUT

Data Dictionary in the Data Division 2610

1. DEFINE structure

Structures, that are described in the Data Dictionary, can be adopted in the data division with DEFINE
'structure name'.

If a record type of the structure should be attracted, it has to be appended as a two places literal to the
DEFINE instruction (see example).

The key word TYPE can be indicated optionally for the record type like in the other divisions.

In these cases the field descriptions of the Data Dictionary will be included in the data division at compilation
time.

CPG2 Programmer’s
Reference Manual

Page 41

Examples:

- -D; DEFINE KUNDEN
- DEFINE CPGWRK 80
- DEFINE CPGWRK TYPE 80

Note: The key word DD is contrary to the other divisions not necessary for the data dictionary processing

in this division.

The entry DD behind a DEFINE FILE Definition is interpreted as record type DD.

About the internal solution: At DEFINE DD a filler will be generated, if the structure is incomplete. (For files
with Directory Field Check).

Example:

DEFINE DEMO
 F1 10 * field 1
 CPGFIL 10 * CPGFILLER
 F2 20 * field 2
 F3 15 * field 3
 CPGFIL 65 * CPGFILLER
 F4 20 * field 5

2. DEFINE Multiple

If the same field is defined several times in the Data Division, the error message '...double defined' appears.
If you work in the data division with DEFINE structure, this case applies if a field is part of multiple
structures. With DEFINE Multiple it is possible to define a field several times in the Data Division.

Note:

These multiple defined fields will be set internally on commentary and must not be part of a redefinition
(overlay).

Example:

DEFINE FILE M;
DEFINE FILE TYPE xx M;
DEFINE FILE TYPE XX MULtiple;
DEFINE HQTFC MULtiple;

Both structures contain the eight places alphafield DOKUM. Without MUL the compilation would abend with
the message 'field name double defined'.

3. Standard values for missing field definition

If only field names are entered, the field definition is taken from the QDDS. Long field names are supported
if DDL is a parameter in the options division.

Data Dictionary in the Input Division 2620

In the input division Data Dictionary structures are attracted with the addition of the key word DD to the
record description.

Data Dictionary is supported for FILEs and FIELDs.

CPG2 Programmer’s
Reference Manual

Page 42

If a record type of a structure should be attracted, it has to be appended at the instruction with the key word
TYPE.

Example:

- -I; FILE KUNDEN DD;
- FILE CPGWRK DD TYPE 80
- FILE CPGKSD DD TYPE AA LIST

With the key words 'List' or 'TEXt' you reach, that a commentary line will be generated to each field, that lists
the describing text from the Data Dictionary.

HL1 data channels are also described in the Data Dictionary.Here is to differ, if the data channel shall be
optimized or not. If no optimizing is wished, you enter the key word HS and afterwards the entries for the
Data Dictionary. To optimize the channel, you omit the entry HS. CPG guarantees, that the control field
CPGHIC remains in each case in the program.

For data structures, the key word DS is indicated before the entries for the Data Dictionary.

For field editions the key word TYPE can have different meanings. TYPE can stand for the record type of the
Data Dictionary, but also for the selection of the field selection. For reasons of the clearness, the key word
SELECT-type can be indicated for the field selection.

Examples:

- FILE KANAL HS DD TYPE 02
- FILE STRUKT DS DD
- FIELD CPGCOM DD TYPE XS TYPE PROGRAMM-5

Data Dictionary in the Input Division with Field Qu eries 2625

When using the Data Dictionary, the input can depend on the check of two signs of the input record.

Example:

- -I; FILE KUNDEN DD 01 1 C 0 2 C 1
- FILE KUNDEN DD TYPE 99 02 1 CHAR 9 2 C HAR 9

The syntax rule: 1. the complete Data Dictionary entries

2. the indicator or the character #
3. the query of one or two signs

Data Dictionary in the Output Division 2630

Structures of the Data Dictionary can also be attracted in the Output Division. The entries for Data Dictionary
must follow directly after a FILE 'structure name'. A DD for Data Dictionary and eventually additionally a
TYPE 'record type' for the record type is indicated like in the Input Division.

The other possible entries for the record description in the Output Division follow in the known sequence,
that is described above.

For field editions, the key word TYPE can have different meanings. TYPE can stand for the record type of
the Data Dictionary, but also for the selection of the field edition. From reasons of the clearness, the key
word EDIT type can also be indicated for the field selection.

CPG2 Programmer’s
Reference Manual

Page 43

Examples:

- -O; FILE KUNDEN DD
- FILE KUNDEN DD ADD NAME-OF-THE-EXCPT
- FILE KUNDEN DD ADD ON 99
- FILE KUNDEN DD ON 01 AND NOT 02
- FILE CPGWRK DD TYPE 80
- FILE CPGWRK DD TYPE 80 ADD
- FILE CPGWRK DD TYPE 80 ADD ADD
- FILE CPGWRK DD TYPE 80 ON 01 AND NOT 02 U PDATE-CPGWRK

- FIELD A DD

Key fields marked with Y or T will be generated as commentary statements at DISK and KSDS files at the
output for Update. For the addition the key fields are also generated as output fields.

Data Dictionary can be used for field editions. In this case the Edit Code, that is indicated in the Data
Dictionary, is also considered.

Reference Structures at Data Dictionary Processing 2640

Analogousely to the reference file, as it can be indicated in the Data Dictionary (see manual CPG2 service
programs), you can also work with reference structures in the input and output division.

With this processing mode the structure, that was defined with FILE 'file', will not be attracted but the
structure with the name, that was additionally indicated with REF 'file 2' will be attracted.

Example:

- -I; FILE KUNDEN DD REF TEST01
- FILE DD TYPE 09 REF TEST01
- :
- -O; FILE KUNDEN DD REF TEST01 KDUPD
- FILE KUNDEN DD REF TEST01 TYPE 01 ADD KDADD
- FILE DD REF TEST01 TYPE 02 ADD KDADD

For the processing of the file KUNDEN, a structure will be read, that is made up from the structures TEST01
and TEST01, record type 09. The structure TEST01 is put out for the Update; for the addition, a structure
will be put out, that is made up from the record type 01 and record type 02 of the structure TEST01.

The key word REF identifies the following named structure as reference structure. REF is always placed
behind the key word DD or behind the statement of a record type with TYPE. Independent from the position
in the instruction, a record type is always related to the reference structure.

The combinations with other entries will not be limited by the parameter REF.

When you omit the file name, you reach, that several structures can be composed under one file name.
Without this possibility a complete record description would always be generated: When changing the record
description, the read or output processing ends during the execution.

CPG2 Programmer’s
Reference Manual

Page 44

Data Dictionary and Optimizing Function of the CPG 2670

Normally the optimizing function is active in the CPG. That means, that all fields defined in the Input
Division, which are not used in the further program, will be ignored by the compiler and so not be displayed
in the compilation list.

This optimizing function can be canceled with the options parameter DEF. The parameter DEF defines all
fields described in the Input Division explicitly.

Example:

The Options parameter DEF must be indicated, if data are read from a file and are put out on the screen
with a QSF Map without processing.

In this case the fields are described in the Input Division, but not used again in the Procedure Division and in
the Output Division. The fields would be ignored from the internal optimizing function and would so not be
known by the QSF for the output. (With QSF only fields can be output that are defined in the program.)

Data Dictionary Lay Out in the Program List 2680

The listing of the Data Dictionary entries in the program is controled by the following Options parameters:

CPG The entry CPG for the indication in RPG like fixed notation implicises the listing of all attracted
fields.

RPG See CPG.

DIC All coded statements are listed. The attracted fields out of the Data Dictionary are listed with a '-' in
column 6 under their record description (only in the RPG like format).

ENT Entire Input. The whole input is listed. The Default Suppress is canceled, thereby input structures are
listed completely; the fields used by the program, as well as the not used fields. ENT can be combined with
DIC or MIX.

FRE Only the source program in the CPG2 format is listed. FREE is default and has not to be coded.

GEN works like CPG. Contrairy to the parameter CPG, not used fields will not be listed in the Input
Division.

MIX Additionally to the source format, all generated statements will be listed in the RPG format, especially
the attracted field descriptions from the Data Dictionary.

Example: Pecularity for the Output Division

- OPTIONS DIC;
:
- -O; FILE CPGWRK DD TYPE F2
-* KEY 14
- RECORD 100
- FILE CPGWRK DD TYPE F2 ADD
- KEY 14
- RECORD 100

CPG2 Programmer’s
Reference Manual

Page 45

If an Options Parameter is chosen, where the attracted fields out of the Data Dictionary are indicated, the
key field of the file will be listed as commentary statement at an Update in the Output Division, because it
must not be updated for the file; For the adding, the key field or the (partial) key fields will be generated
normally as field description. The attracted fields from the Data Dictionary are indicated in alphabetical
sequence. With an entry in the standard header card, the system programmer can replace this sequence by
the line convention rising sorting.

Test debugging 2800

QDF Quick Debugging Facility 2810

The interactive test debugging QDF is contained in the CPG2. It is described detailed in the manual
'CPG2..service programs'.

QDF replaces the test debugging operations DEBUG and SDUMP. The functions of this operations are
implemented in the QDF.

Special Terminal Dump 2830

The operation 'SDUMP' contains the operation 'DEBUG' and can be called from every place of the program
to be tested. In the second information line, the program address, the SDUMP code and the last used
function key will be indicated contrairy to the operation DEBUG.

At first, following mask appears:

*** *******************
 T E S T - A I D
*** *******************
INDICATORS ON
70 80

*** *******************
PROG.-ADDRESS 00000604 CODE 0152 FUNCTION KEY DE
*** *******************

After pushing the data entry key, a terminal dump with the following format appears:

CPG2 Programmer’s
Reference Manual

Page 46

Program = TST005 TCA 05.03.93 15.28UHR
E F 0 1 3 4 5
002DBAA0 0023F180 0000001C 00 0A 502DA80A 502DA80A 502DB80A
502DC80A 502DD80A 802DBBE6 00 00 002D8B08 0023F080 001F3E40
6 7 8 9 B C D

00000000 0023F000 00000000 000 0023F080 ..0.....
00000010 00000000 002082C0 000 0023F090 d...
00000020 701F6A46 0023F18 BAA0 0023F0A0 1.
00000030 502D9B1E 502D980 6952 0023F0B0
00000040 502DC80A 502DD8 2F720 0023F0C0 ..H...0. ...U..7.
00000050 011EBCA8 001EA2 23300 0023F0D0
00000060 402D9D72 0023F 2DBAA0 0023F0E0 1.
00000070 402D9B1E 502D 02DB80A 0023F0F0
00000080 00220095 00 00000000 0023F100 DV......
00000090 00000000 0 0023F739 0023F110 7.
000000A0 502D9D00 0 002DBAA0 0023F210 1.
000000B0 502D9B1E 0 502DB80A 0023F130
000000C0 502DC80A E4 4022F720 0023F140 ..H...Q. ...U..7.
000000D0 0022EF40 000 00000000 0023F150 ..?.....
000000E0 0000000 000 00000000 0023F160
000000F0 000000 0000 00000000 0023F170

SDUMP = ... + PRINTER =

In the 1. line the phase name of the program (here TST005) and the area will be indicated, which the
Terminal Dump accesses at first. For the first call is this always the Task Control Area (TCA).

In the four following lines the content of the register E,F,0,1 etc. to B,C,D are indicated, whereby the register
number will be indicated on the left above or below the register content. In the example above means:

F the content of the register 15 (F) was before the entry 0023F180 in the SDUMP = 0023F180.

The following 16 lines each describe 256 bytes of the main storage in hexadecimal and character spelling.
The columns 2,3,4 and 5 of this section indicate the storage content hexadecimally.

The columnn 7 and 8 describe the content in clear text, whereby all not printable signs with a hexadecimal
value less than 'C1' are replaced by a point.

Column 1 of this section describes the relative address for each starting point, in the example above for the
TCA address. Column 6 of this section describes the absolute main storage address to each relative
address in column 1.

With the program function key PF8 or data entry, the next 256 bytes can be requested. Thereby can be
paged forward/backward as wished in the Dump.

With the program function key PF7 can be paged backward.

The last line allowes to display the Dump from every place of the CPU. Thereby the programmer can go
directly to the following areas:

ADR address XXXXXX
CSA Common System Area
CIO CPG Input output Area
CWA area Common Work Area
END End Sdump The positioning takes place with the
HLB HL1 Library entry of one of the l iterals beside
IFC Interface Com. Area at: SDUMP = ... and pressing of
MBK Central Routine Library the data entry key.
PRG Application program

CPG2 Programmer’s
Reference Manual

Page 47

PWA Private Work Area
TCA Task Control Area
TCT TCT User Area

The programmer can indicate an offset for file inputs at + , for example TCA + 000100 is the
Transaction Work Area.

If the literal 'ADR' is entered at SDUMP = ... , the following field (+) must contain a valid address. This
address, which can also lie outside the TP partition, will be the start address for the Terminal Dump after
pushing the DE key.

For Printer = the destination Id of the online printers is indicated for the print with PF4.

Program function key: DE Page forward by 256 bytes.

PF2 Reposition.
PF4 Print.
PF7 Page backward by 256 bytes.
PF8 Page forward by 256 bytes.
other end SDUMP

Restrictions for the OPTIONS Parameter BIG and 12K 2920

The operations WRITE, DELET and UPDAT are not supported for VSAM files.

Restrictions for modules without Dataset Logic 2930

If the OPTIONS description of a HL1 module does not contain the parameter DAT or PWA (for dataset
logic), then the sequential reading without key is not supported. Then the operations READ, READ-BACK
READPAGE and READB-PAGE can only be coded with the indication of a keyfield.

See also the table 'maximum values in CPG programs', page 7040.

Section 3 Program Design 3000

Syntax 3010

The source code is entered in a 8O digit 'coding form'. It may be structured in two types:

Coding begins up from position 1

OPTIONS must stand in the first line of the program up from column 1 as key word. The entire program
code will be read afterwards from position 1 up to position 71.

All further rules are described under 2.; note here, that only 71 positions are at the disposal for the code.
That means, that all maximum values indicated below, must be reduced by 8; so:

Last read position: Column 71!
Last position, from which a statement may begin: Co lumn 64!

CPG2 Programmer’s
Reference Manual

Page 48

Program code begins up from column 8

Position 6 remains free or contains a minus sign.

Position 7 remains always free.

The source code consists of single words, which are joined to several records or statements, separated by
one or several blanks.

A line can contain one or several CPG2 statements. The end of a statement is indicated by a semicolon and
a blank afterwards.

A record end sign is only necessary, if several statements are described in a line. An exception is the
OPTIONS statement, for which a record end sign or the key word 'END' is requested.

The words within a statement are separated by at least one blank. The space between two words can be as
long as the statement can be accommodated in a line. The end of a statement is indicated with a record end
sign directly after a word (without blank), followed by a blank. If the following statement begins with a star,
the rest of the line is interpreted as commentary.

A record or statement may not be extended over the line end, that means that the record end sign must
stand in the same line as the first word of the record.

The last statement of a line may not begin behind position 72.

Mixed using of RPG like format and CPG2 format 3020

It is possibile to use 'free' and RPG like format mixed in CPG2 programs.

Note only, that a division must start either with a division indicator in the CPG2 format or with a card in the
RPG like format.

Program Structure 3030

Dependent from the type of the instructions to be executed, the program will be structured into different
areas (divisions). For each division an own grammar applies. A program can contain the following divisions:

OPTIONS This area contains instructions for the compiler for particular tasks or environments.

FILES This area describes the files used in the program. (abbreviation: -F) (Division indicator is

optional)

DATA DIVISION or
WORKING STORAGE SECTION

In this area the data fields (variables) used in the program are defined. (abbreviation: -D)

FORMS This area describes the form control of a printer.

INPUT DIVISION

In this area is described, from where the data which are necessary for the program are
taken. (abbreviation: -I)

PROCEDURE DIVISION

CPG2 Programmer’s
Reference Manual

Page 49

This area describes, how the data are processed. (abbreviation: -C) At the end of the
procedure division, the subroutines, which may be separated optionally from the main
program with the key word SUBROUTINES, are coded. (abbreviation: -SR). Between the
main program and the subroutines, may still be total computing regulations (see chapter
2270). These will be marked with the division indicators -L0 up to -L9.

OUTPUT DIVISION

In this area is described, where the data processed in the program shall be output.
(abbreviation:-O)

The stated sequence is requested.

OPTIONS 3300

The key word 'OPTIONS' indicates, that the following key words are interpreted for the control of the
compiler. The following key words can be lined up in any sequence, the single words are separated with one
or several blanks. The end of the OPTIONS is indicated by a record end sign. Several lines can be used for
the options.

Note:

If the phase name is not given by a Job Control statement, and should the Options parameter list consist
several lines, then 'PHAse xxxxxxx' must be coded in the first line of the options.

Following key words are possible:

ADD x or ADR X. Particular addressing routine.

The registers are assigned dynamically. The programmer can enter a proper adressing routine into the
program for particular applications, that were cataloged before under the name 'CPG*CADx' into the Source
Library. The sign '*' stands here for the release suffix (for example 2 for 2.5).

The 'x' in the last position will be determined by the entry ADD x in the OPTIONS statement. If ADD 0 is
entered, the copy book CPG*CAD0' will be inserted into the program.

So the programmer can extend the TWA from 4 to 8K, or take particular registers for example used in a
subroutine out of the addressing.
Standard copy books are delivered for the following entries, that means that these values are valid for 'x' :

'B' CPG internal.
'C' CPG internal.
'D' DL/I application programs.
'G' CPG internal.
'I' CPG internal.
'J' CPG internal.
'K' CPG internal.
'L ' CPG internal.
'O' OS/390 assemblers.
'P' CPG internal.
'R' CPG internal.
'U' PLT program with PWA using.
'V' Com. -Level and DL/I-Dataset.
'W' see 'V' and TWA size 8K.
'X' CPG internal.
'Y' CPG internal.
'#' Command Level application programs (#=X'7B').
'0' Com. Level maximum program size 20K and TWA SIZE 8K

CPG2 Programmer’s
Reference Manual

Page 50

'1' Macro Level maximum program size 20K and TWA Size 8K
'2' CPG internal.
'3' 12K TWA in Batch Programs
'4' CPG internal.
'8' PLT program with PWA using (Command Level).
'9' DL/I using program with maximum prog. 20K and TWA size 8K.

Example: 'ADD D' = 'ADDRESS D' = 'ADDRESS DL/1'

ASM x If the CPG source code will not be translated with //EXEC ASSEMBLY into machines language, but
with another assembler procedure, so the suffix of the procedure name is indicated here instead of x.

It must be guaranteed, that an assembler procedure with the name CPGUASSx exists, which is generated
as follows: // EXEC PROC=CPGUASSx.

Example: OPTIONS ASM-SUFFIX H for the procedure CPGUASSH

ASS x or ASSEMBLER LIST x is the type of the assembler list, where 'x' can accept the following values:

'A' assembler list without macro-dissolution.

The part of the assembler program, important for the processing is printed. TP dummy sections,
macros and CPG subroutines are not printed.

'C' complete assembler program.

The assembler program generated by the CPG will be completely listed.

'D' assembler list with all Dummy sections.

As 'A', however all Dummy sections will also be listed.

'M' assembler list with macro dissolution.

As 'A', however the generated statements will be listed for every macro.

'N' no assembler list

The assembler program generated by the CPG is not displayed. Only the CPG compilation list
including CPG- and assembler diagnostics will be printed.

'S' complete assembler program with short cross reference.

Like 'X' but with display of the assembler short cross reference (only VSE).

'T' Transaction Work Area.

From the assembler list, only the Transaction Work Area and the assembler diagnostics will be
displayed.

'X' complete assembler program with cross reference.

As 'C', however additionally with listing of the assembler cross reference.
X can also be the first letter of a word.

Example: ASSEMBLER LIST TWA

CPG2 Programmer’s
Reference Manual

Page 51

ATT C or ATTRIBUTES C .

A 'C' causes, that the entries behind the key word ATT are interpreted in the output division as hardware
attribute. So the entire hardware attribute set of the screen is available to the programmer, if for any reason
the CPG attributes are not sufficent.

C can also be the first letter of a word.

Example: ATT CICS

AUT At program links an automatic RNDOM*ALL shall be processed.

BAT The generated program should be activated in a batch partition.

BIG The program is bigger than 24 K.

This parameter causes, that an own CSECT will be generated for each input data, for each
subroutine, for the procedure- and output divisions and for the field processing.

Following restrictions apply to this CSECTS:

Per program at most 200 CSECTS are supported.
The CSECT for the field processing may include at most 4K; at most 400 fields can be transferred
per field processing.
The main program (procedure division without subroutines) cannot be bigger than 8 K.
All other CSECTS can be at most 12 K.
The TWA size is restricted to 4 K, but can be increased to 8K with the parameter ADD (see above).
see also 12K.

CAT or CATAL . OPTION CATAL- and phase card will be given with job control statements.

CIC or CICS/CICSE. The program works without the Central Routine Library of the CPG (CICS-version).

The key word CICS generates a macro level program, CICSEsa a command level program.

COL or COLUMN. For any column of the generated H-card every sign can be set in the form

COL 47 - or COLUMN 47 = '-'.

The minus sign in the example is set in order to 'clear' an entry of the standard header for the
application.

COM or COMMAND LEVEL . The generated program shall be executed under CICS-command-level.

DAT for dataset logic. For HL1 modules, this entry can be intended, to obtain the PWA of the module within

a task. This way of processing offers (beside performance advantages) the service, that the files
division of such a module might not be completely contained in the associated main program.

DDL Output of the long field names from the data dictionary in the compilation list.

DDS Output of the short field names from the data dictionary in the compilation list.

DEB for DEBUG. If the Debug facility QDF should be used, the program must be compiled with the options

parameter DEBug.

Note, that the program code with the parameter DEBug increases 8 bytes per statement of the
procedure division.

DEC for DECK. An object deck is punched.

DEF for define. All fields described in data division and input division are defined for the program,

independently if they are used in the further program flow. The optimization function of the CPG is
switched off with DEF.

CPG2 Programmer’s
Reference Manual

Page 52

DIC The programmed statements including the data dictionary entries will be displayed in 'free' form

(columns 6: '-').

END end of the OPTIONS.

ENT for entire input. A complete list of the input division will be indicated, not only the fields really used

from CPG in the program. ENT can be combined with the options DIC or MIX.

ESA ESA mode able programs. See chapter 2970.

GEN lists the commands generated by the compiler and suppresses the listing of
 fields not used in the input division.

HL1 The index of the private HL1 Library can be entered for X. (=LIB)

INT for interruption. The parameter causes that a program break takes place in
 a batch program if there is any program error (cancel).

LAN X or LANGUAGE XXXXX . X can assume the following values: A 'D', 'E', 'I', 'J' causes, that all text

output is in english. A ' ' or a 'G' causes, that all text output is in german.

Each other sign causes, that a text phase cataloged by the programmer under CPGSX * applies,
whereby the * is replaced. The entry has no effects on the presentation of the decimal signs.

LIB X For X, the index of the private HL1 Library is entered. (=HL1)

LIS X list processing. X can assume the following values: E, F, L, N, O, P.

E error messages will be printed right beside the text.
F a block diagram is printed
L the line number or the left side is suppressed
N the programmer check list is suppressed
O the error messages are printed between the lines
P to every generated statement the number of the required bytes will be printed.

LON long array names. LONG (or standard header column 100) offers the possibility, to work with array

names of all lengths. To note is, that the name of the index field must be only one position. Also 5-
and 6 digit array names will be moved internally into CPxx names.

LOW small letters are not translated automatically at screen input.

MAC a macro level program is generated (replaces an entry in the standard header, see also chapter

2970).

MAI or MAIN (only for HL1) A HL1 main program will be generated.

MAP The QSF maps are displayed in the compilation listing.

MIX The programmed as well as the generated statements will be listed.

MVS the program should work under OS/390 or MVS.

NON- NON-ESA command level programs (to overwrite the standard header, so that
 programs are executed with the CPGCLI). See also chapter 2970.

NOS NOSYSIN, enables the CPG compilation via the punch queue, so that IJSYS04 is not necessary. For

this type of compilation, the job CPGZPUN, which is described in chapter 7000 is necessary.

CPG2 Programmer’s
Reference Manual

Page 53

OPT optimization for numerical operations. This entry refers to the numerical operations '+', '-' and '='.
Optimize means, that for these operations the direct assembler source code is generated. The
central routine library has not to be executed. This causes a considerable improvement of the
running time especially in CPG batch programs

Note:

The parameters OPT and DEBug exclude themselves mutually. Only one of the two parameters is
meaningful. CPG2 takes the last made entry.

PHA XXXXXX or PHASE XXXXXX. XXXXXX = Phase. Phases might be at most eight
 positions long.

PUN or PUNCH. An assembler deck is punched.

PWA to preserve the PWA. This entry for HL1 modules means, that the PWA is not released within a task,

but will be reinitialized with each call (without initialisation: DAT). This processing type offers (beside
performance advantages) the service, that the files division of such a module has not to be included
completely in the corresponding main program.

QSF The QSF maps and the fields used by these maps will be listed in the refe-rence list.

QLF The LIST documents and the fields used by these documents will be listed in the compiler list.

QTF See QLF.

RDR or REAder to indicate the readers address (usually an entry in the standard H card CPGSTH.)

ROO or ROOT (only for HL1). A HL1 main program (root phase) shall be generated.

RPG lists only the generated CPG statements in RPG-like syntax), not the '-' cards coded by the

programmer.

RUN assembly is also executed at CPG errors.

SEM or SEMICOLON. The end of a statement is indicated by a semicolon.

(Default in english version, where decimal places in numerical fields are separated by a full stop
(controlled by the standard header, colum 93).

CPG2 Programmer’s
Reference Manual

Page 54

Note:

SEM must not be the last key word of the options.

SHA shared data. The entry for a HL1 module is taken, to exchange data with the calling program

automatically. (that means, without using a data channel)

The data exchange takes place between fields, that have equal names and field definitions in both
programs. The data is exchanged like in QPG, only up to the field CPGEDS, if it is defined in the module.

SHO as opposite to LONG (s.o.). With SHOrt, the compiler does not translate 5-
 and 6 places array names internally.

SIG or SIGN. Zone C for numerical fields (see chapter 2145)

SIZ XXX or SIZE XXX. XXX is the size entry for the compilation and must be 3 positions long.

SUB for subroutine. This parameter causes for batch programs, that the control is given back to a calling

program at the program end (for example DL1).

TIT XXXXXXX or TITLE XXXXXXX sets the following title (XXXXXXX), that may be at
 most 23 positions long, as a headline onto all pages of the compiler list.
 Blanks within the title have to be replaced by '#'. (#) = Number sign.

Example: TITLE THIS#IS#A#TITLE

TRA for trace. If the quick debugging facility QDF shall be used, the parameter TRAce may be indicated

instead of the parameter DEBug. TRA causes, that only the numerical operations in the interactive
test can be debugged. Advantage of TRA is, that the program code does not increase contrairy to
DEBug.

TWA XXXX. XXXX = TWA size.
Should be branched from another program into this program, so the 4-places TWA size of the calling
program is entered. If the program can be called from several programs, the TWA of the biggest calling
program, must be entered. See also program links.

If only a part of the TWA has to be taken, so the decimal value from the TWA list, which is positioned behind
the corresponding field, must be entered. (Minimum = 116 bytes, maximum = 7836 bytes). Numerical fields,
which start behind the taken TWA area, will be initialized to X'0C'.

USE No automatic RNDOM*ALL shall be made at program links.

XRE or XREF prints a CPG cross reference list.

12K this entry causes, that a program, that is bigger than 24 K and has a TWA with a size of up to 12 k, can

be generated. The restrictions of this parameter are equivalent to those of the parameter BIG.

Note, that 'TWA' must not be set as Dummy word, because the 'TWA' itself is a key word.

Connective words in the text are allowed, if they are not identical with key words. We do not recommend the
related text, because it is possible, that in further releases these filler words get a meaning.

OPTIONS TITLE EXAMPLE THIS IS A COMMAMD LEVEL PROGR AM;

is identical to: OPTIONS TIT EXAMPLE COM;

Further examples for OPTIONS:

CPG2 Programmer’s
Reference Manual

Page 55

- OPTIONS BIG RUN LIS E MIX TIT TEST PHA EXAMPLE 2;

- OPTIONS PHASE EXAMPLE3
- COMMAND LEVEL
- SEMICOLON
- TITEL BUCHUNGEN
- QSF
- END

- OPTIONS PHASE EXAMPLE3
- ENT DIC * complete da ta dictionary
- 12K * 12 K TWA, n o restrictions to pgm.-size.
- TITLE BOOKINGS
- QSF; * maps and fi elds are listed

Note:

The phase must be coded in the first line of the op tions!

Options and Standard Header CPGSTH 3350

A standard header card, which contains all standard informations for the environment, may be installed by
the system programmer. These standards can be replaced by the options instruction if necessary.

Two peculiarities:

Exception: The entry for ESA compilations (CPGSTH column 47) has priority to the corresponding
OPTIONS entry!

2.If there is no options key word to replace an entry of the standard header, so a minus sign must be set into
this column to cancel the functions.

The minus sign with the parameter COL may be set like every other sign:
OPTIONS COLUMN 46 = '-'.

The following table indicates the relationship between the options key words and the columns of the
standard header CPGSTH.

OPTIONS Columns Entry
--- ----------------------------
Default list in the CPG2 format 42 F
Default list without display of the optimized fi elds 16 S
Default HL1 module 51 H
--- ----------------------------
ADD x Addressing 48 x
ADR x Addressing 48 x
ASM x to use High Level assemblers 8-9 Ax
ASS x extension of the assembler list 11 x
ATT x attribute 49 x
AUT automatic RANDOM *ALL 33 Y
BAT Batchprogram 47 B
 + Batchprogram (is always a main program) 51 C
BIG no restriction to program size 32 S
CAT phase is defined by // OPTION CATAL 31 O
CIC program works without Central Routine Li brary 47 C
 (Macro Level)
CICSESA program works without Central Routine Li brary (ESA) 47 D

CPG2 Programmer’s
Reference Manual

Page 56

COM Command Level program 47 L
DAT Dataset logic in the HL1 module 34 *
DDL long names from the data dictionary in t he list 102 L
DDS short names from the data dictionary in the list 102 -
DEB Debugging with QDF possible 46 S
DEC Punch object deck 10 C
DEF define all input fields 16 *
DIC Dictionary display 42 D
ENT Display dictionary completely (ENTire DI C) 16 *
ESA ESA Command Level Programm 47 E
GEN generated statements 42 C
HLI x Private HL1 Library 22 x
HL1 x Private HL1 Library 22 x
INT Interrupt in Batch Programs 46-47 IB
LAN x Language Parameter 21 x
LIB x Private HL1 Library 22 x
LIS x processing of the listing 15 x
LON long array names (also for 5-/6-digits) 100 A
LOW upper-lower letters in taskoriented prog rams 39 L
MAC macro Level program 47 M
MAI main program (Main) 51 C
MAP maps and QLF lists in the list 46 M
MIX mixed listings of generated and coded st atements 42 M
MVS MVS-/OS/390 compilation 8-9 OS
NON- non ESA mix mode 47 O
NOS NO Sysin, compilation via puncher instea d of IJSYS04 10 P
OPT optimization of numerical operations 46 O
PUN punching 10 D
PWA Dataset logic in the HL1 module, PWA ini tialized 34 *
QLF maps and QLF lists with documentation in the listing 46 N
QSF maps and QLF lists with documentation in the listing 46 N
QTF maps and QLF lists with documentation in the listing 46 N
RDR xxx reader adress 12-14 xxx
REA xxx reader adress 12-14 xxx
ROO main program (Root Phase) 51 C
RPG list in the CPG1 format (RPG syntax) 16,42 *
RUN execute compilation even in the error ca se 50 A
SHA Shared data (EXHM without data channel) 34 *
SHO 5- and 6-digit array names remain unchan ged 100 -
SIG Sign 40 S
SIZ xxx Size 7-9 xxx
SUB Batch subroutine 51 S
TRA trace with QDF only at numerical operati ons 46 T
TWA xxxx TWA length of the calling program 27-31 xxxx
USE no automatic RANDOM *ALL (User does it) 33 N
XRE cross reference in relation to the list 16 *
12K no restriction to program size with up t o 12K TWA 32 T
--- ----------------------------
Default For information: 31 O
Default For information: 49 E

CPG2 Programmer’s
Reference Manual

Page 57

Files 3400

Before the first application, a file should be described at first in the data dictionary of the CPG2.

In this case the statements

- FILE PLATTE
- FILE PLATTE DD TYPE01
- FILE PLATTE DD TYPE01 INPUT

are sufficient in order to define the file PLATTE.

If the file is not described in the data dictionary, it must be described manually by the programmer. The
following parameters must be indicated in the requested order. Connective dummy words are not allowed on
this occasion.

--- ----------------------------
 KW DN (IO) (MO) (FO) (BL) (SL) (KL) (FT) (FO) (SV) UN (BA)
--- ----------------------------

KW = key word FILE
DN = file name
IO = in-/output mode
MO = mode: queueing for Temporary Storage, buffer mode
FO = record form: fixed or variable
BL = block length
SL = record length
KL = key length
FT = filetyp (KEY, RBA)
FO = file organization
SV = service: for example variable processing
UN = unit
BA = Batch extensions

For the different units, very different syntax rules are valid. Each file can be described according to the
shown system, in that a '#' (number sign) must be set for the entries which are not used.

A shortened form should be used, that is described in section 3450.

Key word 'FILE'

FILE must be entered.

File name Name of the file defined in the TP file table. The name may be 7 positions long for VSE and

8 positions long for OS/390.

The first sign of the name must be a letter or a $ sign, for the further signs, letters, digits and $ signs are
supported.

If a disk file is used for the first time, it must be described in the TP file table.

File type
Possible entries are:

'I' input file (or INPut)

CPG2 Programmer’s
Reference Manual

Page 58

'O' output file (or OUTput)

'U' update file (or UPDate)

'C' combined file (or COMbined)/screen units for dialogue mode

These entries are even then supported, if a file is already completely described in the data dictionary. In this
case you replace the entry predetermined from the data dictionary.

Temporary Storage processing mode

'Q' or 'QUEue' is a peculiarity for the Temporary Storage processing. The entry causes, that the Temporary
Storage can be processed 'record wise'.

The processing of queues and TS single records is different in the syntax. TS single records are not
supported in every environment. If a queue has to be processed or provided with the single record logic, so
the entry 'S' may be set.

Printer type (alternatively) (outdated)

The entry 'B' or 'BUFfer ' causes, that the printer works in the buffer mode. The printer output is then
described like a screen output.

Record format
Possible entries are:

'F' or 'FIX' for fixed record length

'V' or 'VAR ' for variable record length (only for screens and VSAM files)

If the entry is missing, 'F' is taken for disk files and 'V' for screen files.

Block length
Disk file:

The block length for the blocked records must be entered into this field.
For a VSAM file, the double record length or a blank will be entered (in the CICS-FCT Recform=Blocked).

HL1 Dataset:

For datasets, this field remains free. (in this case, '#' must be entered.)

Screen:

The number of the screen lines is entered into this field. (for example 12, 24, 27, 32, 43, 50 or 62). The field
record length must contain the length of a screen line.

Record length
For the disk file the logical record length must be entered.

For files with variable record length, the length, that corresponds to the longest record to be processed, must
be entered.

For datasets, the length of the datasets must be entered.

CPG2 Programmer’s
Reference Manual

Page 59

On the screen, the length of a screen line will be entered. (outdated). The CPG compiler checks the first and
last position in the input and output division for the file on the base of this length statement.

Key length

For KSDS files and datasets, the length of the (packed or unpacked) key must be entered in bytes.

For VSAM ESDS or RRDS files, 4 (bytes) must be entered.

Record addressing

For ISAM and VSAM files:

' ' KEY ISAM and VSAM KSDS and RRDS
'K' KEY ISAM and VSAM KSDS and RRDS
'R' RBA VSAM ESDS

'K' will be entered for missing entries.

File organization

Possible entries are:

' ' ISAM -, VSAM - or DA-file
'I' ISAM -, VSAM - or DA-file
'V' VSAM file
'L' VSAM file locate mode
'R' Reuse. VSAM file is loaded again (only batch)
'AUX' Auxiliary Storage (stored externally on disk)
'IND' Independent Storage (terminal independent)

Processing mode

The entry 'V' or 'VARiabel' describes a variable file name, indeed only for

- Printers
- Transient Data
- Temporary Storage

If a 'VAR' is entered here, so the file name can be changed during the program execution. The standard
value is the name indicated behind the key word FILE.

CPG internal fields, which are filled in the program with the alternative name, may be taken to change the
file name

CPGDID 4-places alphanumerical for unit PRINTER
CPGTDI 4-places alphanumerical for unit TRANSDT
CPGTSN 8-places alphanumerical for unit STORAGE

CPG2 Programmer’s
Reference Manual

Page 60

Input/output device

Possible entries are:

DISK disk unit (for all disk types and file organizations)

DISPLAY screen (outdated)

DLI DL/I data base

ESDS VSAM ESDS file

HL1 HL1 Dataset (for users of the CPG3)

HL1DS HL1 Dataset (for users of the CPG3)

KSDS VSAM KSDS file

PRINTER printer (only Batch)

PUNCHER puncher (only Batch)

READER reader (only Batch)

RRDS VSAM RRDS file

STORAGE Temporary Storage

TABLE table (see operation FIND)

TAPE record (only Batch)

TRANSDT tranaction storage (transient data)

VBOMP VBOMP (EDN) data base

Following units are not admitted in the batch processing

DISPLAY, TRANSDT

Extensions for the batch programming: (See also 'short form')

For the batch programming, advaced functions are supported, that can be indicated in any order behind the
unit.

The meaning of the key words:

NO OPEN files with this entry are not opened automatically, they must be opened with the instruction

OPEN explicitly for the processing in the program.

The entry is not supported for the units DL1, PRINTER, PUNCHER, READER, STORAGE and TABLE.

NO REWind tapes will be rewound usually after the processing. With NO Rewind, the tape is not

rewound.

STAndardlabel This entry must be taken, if sequentially record files with file label are processed; otherwise
the check of the TLBL parameter can be omitted.

CPG2 Programmer’s
Reference Manual

Page 61

SYSnumber A six places SYS number may be entered for records. For printers, also a SYS number or

SYSLST can be entered; with this entry, different print outputs may be produced at the same
time in a program.

UNLoad For the tape processing, UNLoad causes that a tape is rewound at program start to the tape

start and is unloaded at the program end from the the record station.

UNOrdered a VSAM KSDS file can be loaded unsorted with this entry or an UNSorted addition is

possible.

Note indeed, that this processing mode may interfere the performance considerably. Bigger
files should be sorted and played into a KSDS file.

Examples for file descriptions:

- FILE KUNDEN
- FILE PSBNAM DL1
- FILE DR01 OUT FIX 132 PRINTER
- FILE DR02 OUTPUT BUFFER FIX 120 PRINTER
- FILE TS01 O F 500 STORAGE
- FILE TS02 UPD FIX 56 VAR STORAGE
- FILE TS03 UPD FIX 22 VARIABLE AUXILIARY STORAGE
- FILE TS04 UPD QUEUE FIX INDI STORAGE
- FILE STOR INPUT QUEUE FIX 1000 STORAGE
- FILE BILD O V 24 80 DISPLAY
- FILE TAB1 INPS FIX 19 9 TABLE
- FILE TD01 I F 560 VARIABLER TRANSDT
- FILE TEST01 OUT FIX 1000 500 05 KEY REUSE KSDS UN ORDERED UPDATE
- FILE TAPEIN INP FIX 300 TAPE STANDARDLABEL SYS010
- FILE TAPEOUT O F 300 TAPE NO REWIND NO OPEN
- FILE LISTE2 OUT FIX 132 PRINTER SYS012
- FILE HQTFC UPD FIX 500 4 HL1

Peculiarities for DISK and the VSAM file types:

With the units ESDS, KSDS and RRDS, two numerical values are expected: the first value is the record
length, the second the key length.

DISK is intended for sequential batch files. The first numerical value is interpreted here as block length, the
second as record length. A number sign must be entered if a block length is missing.

If all entries are made like it is described above, you can also use the unit DISK for online processing:

- FILE PLATTE I F 1000 500 05 K I DISK;
- FILE PLATTE INPUT PRONTO 1000 500 5 KEY INDEX DIS K;

- FILE SEQBAT OUT FIX 500 100 DISK; * sequential batch file

- FILE DATEINS UPD VAR 500 05 KSDS
- FILE DATZWEI OUT VAR 256 04 RBA ESDS

Shortened Syntax 3450

Only the parameters, that are necessary for the definition of the corresponding unit, can be indicated in the
following shortened syntax:

CPG2 Programmer’s
Reference Manual

Page 62

1. Only file name and unit must be indicated for DLI / DL1.

2. File name, input/output mode, fix or variable, the record length and the unit are sufficient for the units:

DISK only for unblocked sequential batch files (!)
ESDS
LU61, LU62
L3286 B is also supported for buffer mode.
PRINTER
READER
RRDS
STORAGE The file definition for temporary storages can be extended with the entries for

variable processing, auxiliary or independent processing and queueing.
TAPE For unblocked tapes.
TRANSDT

File name, input/output mode fix or variable, two length statements and the unit are sufficent for the following
units. For which entries the two length entries are taken, is described in brackets:

DISK Block and record length (for sequential batch datas)
DISPLAY Block and record length
HLI,HL1(DS) Record and key length
KSDS Record and key length
RRDS Record and key length
TABLE Record and key length
TAPE Block and record length (for blocked tapes)

Extensions for the Batch Processing 3455

Extensions for the batch processing, like NOREWIND, NO OPEN, etc, can be indicated directly behind the
file name, if the file is described in the data dictionary.

- FILE TAPEOUT NOREWIND
- FILE TAPEOUT NO OPEN

The combination of the key words INPUT/OUTPUT and the batch extensions is supported, if the key word
DD is indicated.

Example: FILE CPGWRK DD OUTPUT NO OPEN

Data Division (Working Storage Section) 3500

Fields and arrays are defined in the Data Division. The most simple form is the definition of an alpha field. It
consists of the name of the field and the field length in bytes. The instruction...

- ALPHA 7;

... defines a field with the name 'ALPHA' in the length of 7 bytes as alphanumeric field. Several fields may be
defined in a line.

- ANTON 5; BERTA 10; CHARLY 25; DORA 7;

For names, longer than six positions, see chapter 2100.

CPG2 Programmer’s
Reference Manual

Page 63

For the definition of numerical fields, the number of the decimal places separated by a blank, is additioned to
the field length.

- VALUE 7 2;

defines a numerical field named 'VALUE' with 7 positions, out of them two decimal places.

Arrays are defined in the form name, number of elements, in the form '*', length, or decimal places.

- FG 10 * 5;

defines an alphanumeric array with 10 elements, all 5 bytes long, with the name 'FG'.

- FN 10 * 5 2;

defines a numerical array FN with 10 elements. Each element has 5 positions and two decimal places.

TWA Overlay (Field redefinition) 3510

Overlay field (redefinitions) may also be defined. An overlay field is a field which is separated into further
fields. It is defined like an array, 0 (zero) must be indicated as number of the elements.

Overlay fields may be numerical or alphanumerical.

The definitions of the fields, in which the area should be subdivided, must follow on every specification of an
overlay field.

An overlay field can contain further overlays.

Take care that there are enough fields defined to fill the defined area for an overlay field. The block diagram
can be taken as control.

Example:

- ANSCHR 0 * 60
- NAME 20
- ORT 20
- STR 20

The three fields NAME, ORT, STR, can also be processed, as a result of the overlay, under the common
name 'ANSCHR'; while reading the field ANSCHR, the fields NAME, ORT and STR are filled.

Note at the overlay with numerical fields, that they are stored internally in packed form. Their length is not
the length of the definition, but the length of the packed field in bytes. Example: VALUE 7 2 is four bytes
long.

Overlay with ORG 3520

The key word ORG offers another possibility of the TWA overlay. In relation with a field name, ORG
positions in the TWA onto the position, on which the stated field begins. If ORG is set without the field name,
it is positioned behind the highest byte of the TWA, described up to now, that means, on the next 'free'
position.

CPG2 Programmer’s
Reference Manual

Page 64

Example:

- -D. F1 10; * Byte 1 - 10
- F2 10; * Byte 11 – 20
- ORG F1; * Positioning on byte 1
- F3 5; * Byte 1 - 5
- F4 5; * Byte 6 – 10
- ORG; * Positioning on byte 21
- F5 3; * Byte 21 - 23

To make redefinitions more flexible, the end of a redefinition may be explicitly indicated with ORG-END.
Behind the key word ORG-END must stand a field name already defined!

Example:

 DEFINE STRUKT1
 ORG RECORD
 FELD1 10
 FELD2 20
 ORG FELD2
 FELD3 2
 ORG-END FELD2
 FELD4 15

Data Dictionary in the Data Division 3530

Structures, that are described in the data dictionary, may be defined in the data division with DEFINE
'structure name'.

If a record type of the structure should be chosen, it is attached to the DEFINE instruction (see example).
The record type can be two bytes long.

Optionally the key word TYPE may be indicated for the record type like in the remaining divisions.

In this cases, the field descriptions from the data dictionary will be inserted into the data division during the
compilation.

Examples:

- -D; DEFINE KUNDEN
- DEFINE CPGWRK 80
- DEFINE ARTSTA TYPE 01

If the same field in the data division is defined several times, the error message '...previously defined'
appears. If you work with define dictionary structure in the data division, then this case appears, if a field lies
in several structures. With define multiple it is possible to define a field several times.

Example:

 DEFINE DEMO1
 F1 10 * FELD 1
 F2 20 * FELD 2
 F3 15 * FELD 3
 DEFINE DEMO2 MULTIPLE
 F4 8 * FELD 4
 F2 20 * FELD 2
 F5 12 * FELD 5

CPG2 Programmer’s
Reference Manual

Page 65

Note:

These fields defined several times will be set internally on commentary , that means, they must not be a part
of a redefinition (overlay).

If only field names are entered, the field definition is taken from the QDDS. Long field names are supported
in the options instruction in relation with DDL.

Furthermore, a FILLER will be generated in the data division (Define DD). (Only for files with Directory Field
Check).

Example:

 DEFINE DEMO
 F1 10 * FELD 1
 CPGFIL 10 * CPGF ILLER
 F2 20 * FELD 2
 F3 15 * FELD 3
 CPGFIL 65 * CPGF ILLER
 F4 20 * FELD 4

External Fields (key word EXT) 3540

The key word EXTern behind the field description identifies a field as external.That means, that the field is
not taken over to the TWA of the program. So the programmer can access for example external fields in the
CSA, with which he must guarantee that the stated field exists also under the same name and with the same
length and type outside the TWA.

Adjustment on Word Borders 3550

Alpha fields can be adjusted at the definition in the TWA; the following keywords are available:

Double for the adjustment on double word border,
Full for the adjustment on full word border and
Half for the adjustment on half word border.

The key word is attached to the definition.

Only one key word in relation to a definition is possible; the combination of the adjustment on word borders
with the key word EXT for external fields is not supported.

Forms Division (printer control) 3600

For online printers, that work in the Line Mode (with line transportation and skip to channel), a FORMS
description can be given after the Data Division.

The FORMS division starts with the parameter FORMS. Afterwards, the printer name of the files division
follows.

The default form length is 72 lines (12 inches).If another form length is wished, the key word LENGTH has to
be set in front of the wished line number.

CPG2 Programmer’s
Reference Manual

Page 66

The default for channel 1 is line 6, and line 69 for channel 12. For other skips to channel, all channel skips
must be indicated in pairs in the sequence 'Line', 'Channel', with or without key words. The FORMS
description must not exeed a line. The key words here have only descriptive meanings and can be chosen
by the programmer.

Examples:

- FORMS DR01; * Printers DR01, 72 lines long, lin e 6 channel 1, 69 12
- FORMS DR02 LENGTH 36; * Printer DR02 36 lines, Z 6 channel 1, Z 69 KS 12
- FORMS DR03 LINE 3 CHAN 01 LINE 12 CHAN 02 LINE 6 6 CHAN 12; *Length 72
- FORMS DR04 LENGTH 72 LINE 1 CHANNEL 1 LINE 69 CH ANNEL 12;
- FORMS DR05 LENGTH 36 003 01 066 12;
- FORMS DR06 LENGTH 36 ZEILE 3 KANAL 1 ZEILE 66 KA NAL 12;
- FORMS DR07 LENGTH 36 LS 3 CS 01 LS 66 CS 12;

If no FORMS description is indicated, the default values are taken internally.

So the FORMS Division is optional.

Input Division (Syntax) 3700

In the input division, the input structures are described for the required data in the program. Here we
distinguish two types of input descriptions: The record description and the field description. For each file,
from which data are read, an input description is necessary. An input description consists of a record
description, that is demanded necessarily as first statement of an input description, and field descriptions,
that are normally inserted into the program during the compilation from the data dictionary.

Record Description 3710

It is distinguished between file- and field descriptions:

Files KW DN (VAR) (BA)
Fields KW DN (TP)

KW = key word
DN = file-, segment- or array name
VAR = variable input positions
BA = condition query
TP = type, name of a certain field selection,

Key word (KW).

FILE means, that the data are read from a file. A file is each type of external storage, from which

data can be read, for example disk, screen, storage etc. With FILE, data can also be read
from logical files, for example datasets, HL1 module, data bases etc.

FIELD means, that the data are read from a field or an array in the main memory, which must be

defined previously in the data division.

SEGM segments are structures, that belong to VSAM files or HL1 datasets and are read with

READI. The same syntax rules are valid as for FILE. Segments are always coded just
behind the FILE instruction, to which they belong.

CPG2 Programmer’s
Reference Manual

Page 67

File name (DN)

The name of the file or the field or the array must be coded directly behind the key word. According to the
key word, different rules are valid for the names.

FILE the name of the file may be at most eight positions long. For the

SEGM An exception exists for the names of the data structures, whose length is restricted to six
places.

FIELD field names may be up to thirty positions long. Note the restrictions, listed in section 2 (fields, arrays)

in particular for arrays which shall be processed indicatedly.

Specifying of field selections

If different possibilities exist for the field selection (key word FIELD), so a name in the record description
may be given to select a certain input description. This name is added to the statement in relation with the
key word TYPE.

The field selection can also be taken from the data dictionary. So the key word TYPE can have different
meanings: It can stand for the record type of the data dictionary, but also for the name of the field selection.
For reasons of the definiteness, the key word SELECT type can be indicated for the name of the field
selection.

In the input record description, DEFine may be indicated in addition to the data dictionary key words. So is
guaranteed, that all fields of the structure are defined for the program.

Example:
 -I;
 FILE DATEI DD DEF;

 or: -I;
 FILE DATEI KF 01 1 C A;
 FILE DD REF DATEI TYPE XX DEF;

Variable input positions (VAR)

A special type of processing is the use of variable input positions. If a file should be processed in this way,
the key word VAR must be entered directly after the file name.

At present, this processing type is an exception; it is used for example to process inputs for record lengths of
more than 8000 bytes.

The moving factor is indicated in the internal field CPGFIS (see example in chapter 8000).

Condition query (BA).

The condition query is different for the different file types. The general form depends on the file type:

Disk, tape, reader (TP) (BD) (CA) (AND) (CA) (AND) (CA) with CA=PS (NOT) CD CH
Dataset (TP) (BD) (CA) (AND) (CA) (AND) (CA)
Screen (TP) (BD)
Data dictionary TP (KW SA) (KW REF)
Data structure TP (LG)
HL1 data channel TP
Field (KW) TP

CPG2 Programmer’s
Reference Manual

Page 68

Meaning of the abbreviations:

TP = filetype / field processing type
BD = condition (switches 01 to 99)
SA = record type (with key word 'TYPE')
REF = reference structure (with key word 'REF')
CA = character query
PS = position in the record
CD = character digit zone
CH = character
LG = length of the data structure
AND = linking of several queries
NOT = inversion (condition is not fulfilled)

Filetype / field processing type (TP)

Usually, the filetype is optional.

Files any entry (for example NS = no sequence)

The indication of the type is requested in following special cases:

Data Dictionary DD
Data structure DS
DL1 data bases DS (input over data structure)
HL1 data channel HS
Field processing any name, up to 30 positions

Condition (BD)

Here, a switch between 01 and 99 is set. For a condition query, the switch will be set if all queries are
fulfilled. A switch is absolutely required, if a character query (CA) follows.

Example:

 - FILE PLATTE KF 99 1 C 0; 100 101 FELD2A
 - FILE PLATTE 98 2 C 0; 100 101 FELD2B

If the first character of the file is equal 0 in this case, data will be read from the file PLATTE into the field
FELD 2A, but not into the field FELD2B. If a condition is fulfilled and a switch is set, the following
record definitions of the same file are not processed.

Remedy:

 - FILE PLATTE KF # 1 C 0; 100 101 FELD2A
 - FILE PLATTE KF # 2 C 0; 100 101 FELD

In this case, the input switch is not necessary. A number sign must be entered instead. The input record
definitions are now independent from each other, so that FELD2A as well as FELD2B can be read.

CPG2 Programmer’s
Reference Manual

Page 69

Character query (CA).

A character query always refers to a storage position in a record, that is queried on a certain value. That
query can be repeated up to three times for different characters. It will be queried, if a certain character (CH)
from the type (CD) is placed on a certain position (HP) or not.

PS is the up to four digit value of the position, relatively to the beginning of the record. PS = 1 for the

first position in the record.

CD indicates, how should be tested:

C or Character the whole character is tested.
D or DIGIT only the digit part is tested.
Z or ZONE only the zone part is tested.

CH indicates, on which value should be tested. For example 'A': does the position to be tested contain the
character 'A'? (# for blank?)

NOT inverts the query, that means, the position to be tested contains any other character than 'CH'.

For a sign query, the parameters TP and BD are absolutely necessary.

Examples:

 2 C A position 2 contains the character 'A'
 1234 D 7 position 1234 contains the digit seven
 1 NOT C 0 position one does not contain the character zero

Length of the data structure (LG).

For a data structure, the full length of the data structure can be entered here, if the structure is only
described partially in the input definition.

Examples for record descriptions:

- FILE BILD
- FILE PLATTE VAR
- FILE KUNDEN DD
- FILE KUNDEN VARIABEL DD 99 11 CHAR *;
- FILE PLATTE KF 11 1 NOT CHAR A 2 CHAR B 3 CHAR #;
- FILE ARTIKEL AA 01 1 C A AND 2 C R;
- FILE HUGO DS 200;
- FILE XKANAL HS;

Input record description in relation with data dictionary is described more extensively in chapter 2600.

- FIELD HUGO;
- FIELD AF Type SATZ1
- FIELD ALPHANUMERIC STRING;

Not allowed is:

- FILE LANGER-HEINRICH; * File name bigg er than 8 positions
- FILE ARTIKEL 1 C A AND 2 C R; * Filetype and c ondition is missing
- FIELD HUGO AA 01; * Filetype and c ondition are not allowed

CPG2 Programmer’s
Reference Manual

Page 70

Field description 3750

The general representation form of a field description is:

(SF) VP BP (DP) FN (SP) (BD) (BD)(BD)

SF = storage form (packed, binary, logical)
VP = from position in the record
BP = until position in the record
DP = number of digits
FN = field name
SP = key word selector pen indicator
BD = switches 01 - 99 or L0 - L9

Storage form (SF)

This entry is omitted for alphanumeric data fields. For numerical fields, an Entry is taken here, if the data are
stored in one of the space saving packed forms.

P or PACked the field is stored in packed form.
B or BINary the field is stored in binary form.
L or LOGical the field is stored logically packed.
O or OPTimize the field is stored in packed form with even digit number.

Up from position (VP)

The position, at which the field begins, is entered here. The entry is numerical, up to four positions long and
absolutely requested.

Until position (BP)

The position, with which the field finishes, is entered here. The entry is numerical, up to four positions long
and absolutely requested.

Decimal Places (DP)

An entry in this position marks the field as numerical. The number of the decimal positions for numerical
fields must be entered here. The entry is numerical and must not be bigger than a position.

Name of the field or the array (FN).

In this position, a valid field name must be entered (see also section 2, fields).

Key word selector pen indicator

SP is set for the selector PEN and marks a selector pen indicator (only for
screen files).

Example : - 0205 0279 PAGE SP 20

Indicators (BD)

CPG2 Programmer’s
Reference Manual

Page 71

Three input indicators can be indicated, which are set during the input, if the input field is greater (first BD),
less (second BD) or equal zero or blank (third BD). The positions, that contain no switch, must be filled with
number signs.

A group switch L0 - L9 may be set.

The three switch types (group switches, input switches and selector pen indicator) exclude themselves
mutually.

Examples for field descriptions:

- 1 2 SA; * from 1 to 2 stands the field SA;
- 3 9 2 VALUE * from 3 to 9 stands the VALUE with 2 decimals
- P 10 11 0 RNR; * from 10 to 11 stand s the running No packed;
- 1 2 SA; 3 9 2 WERT; P 10 11 0 LNR. * ;
- 0202 0279 PAGE SP 01; * selector pen indica tor (up from) 01
- 11 12 WGRP L2; * Group changes L2 at the field WGRP
- PAC 1 3 2 NUM # 10; * Switch 10 is set, i f NUM is less than 0

Examples for Input Descriptions: 3790

 FILE KUNDEN DD;

All field descriptions are taken from the data dictionary. The input description for the file KUNDEN is so
complete.

- FILE KONTEN; * manual description
- 1 5 KONTO
- 6 30 TEXT
- P 31 35 0 UMS; * Array 12 fi elds from 31 to 90
- 91 92 0 MONAT

- FILE KONTEN
- 1 5 KONTO
- 6 30 TEXT
- PACKED 31 35 0 UMS
- 91 92 0 MONAT

- FILE KONTEN; 1 5 KONTO; 6 30 TEXT; P 31 35 0 UMS; 91 92 0 MONAT;

CPG2 Programmer’s
Reference Manual

Page 72

Operations in the Procedure Division 3800

ADD adding
AFOOT average value of an array
BEGAS switching to assembler coded program modules
BEGSR subroutine start
BITON set bits on
BITOF set bits off
BREAK finish a loop
CAB compare and branch
CALL call subroutine (other programming language)
CALLM call routine from Central Routine Library
CAS compare and branch subroutine (multiple alternative)
CBS compare and branch subroutine
CHAIN read record directly
CHECK check file
CHANG exchange fields
CLEAR delete all fields to blank or zero
CLOSE close file
CLRIN clear switches dependent from an index
COMP compare
COMRG call communication region
CONT loop interruption
CONVT converting of a field
COPY input of an assembler Copy Book
DEBUG debugging aid or enable/suppress QDF
DELC delete character from a field
DELET delet a record
DEQ release queue (from a locked program part)
DIV divide
DLI DL1 call
DO process a program block
DSPLY output of a console display
DUMP print a dump
EDIT alpha field output
ELIM eliminate character
ELSE otherwise
END end of a program block
ENDAS end of an assembler encoded program part
ENDDO end of a DO block
END-EVALUATE end of an EVALUATE block
ENDIF end of an IF block
ENDSR end of a subroutine
ENQ lock a program part
EREAD input/output of the screen
EVALUATE multiple alternative
EXCPT output
EXHM execute a HL1 module
EXIT exit to another program
EXITD exit to another program with data transfer
EXITI exit to another program with interval control
EXITP exit to another program (like EXIT)
EXITS send program (later) to another terminal
EXITT exit to another program with screen data
EXPR execute another program
EXSR execute a subroutine
FILL fill an alpha field with a character
FIND searching in a data view

CPG2 Programmer’s
Reference Manual

Page 73

GETHS retransferation of a HL1 datachannel
GETIN get switches from the higher level (only CPG3)
GETMI get switches from the highest level (only CPG3)
GOTO branching
IF IF block
INDOF delete the switches from/to
INDON set the switches from/to
JLB move alpha field left adjusted, blanks behind
JRB move alpha field right adjusted, blanks in front
JRC move alpha field right adjusted, character in front
JRZ move alpha field right adjusted, zeros in front
LIST output of lists described program externally
LOADT load back a saved terminal
LOKUP look up in an array
MACRO statement of an assembler command
MAP read a QSF Map
MAPD output of a QSF Map and read in the dialogue
MAPI read a QSF Map in the dialogue
MAPO output of a QSF MAP on the screen
MAPP output of a QSF Map on a printer
MLLZO transfer of first sign
MOVE field content transfer (move right)
MOVEA array content transfer (move array)
MOVEL transfer field content left adjusted
MOVEN transfer alphanumerical into numerical field
MOVEV variable MOVE Operation
MULT multiply
MVR transfer rest of a division (move remainder)
OPEN open file
QSSA qualified SSA (DL1)
PARM parameter transfer for the instruction CALL
PROGRAM execute a QPG program
PROT give a protection code (for CPG3 users)
PURGE delete a Temporary Storage Queue
PUTIN transfer switches to the higher level (CPG3)
PUTMI transfer switches to the highest level (CPG3)
READ read from a file
READB read backwards from a file
READI read file work area / screen data transfers
READP read page
REPLC replace signs
RNDOM set file to random processing mode
ROLL roll array
ROLLB roll array backwards
SAVET save screen content
SCAN search for a character string in an alpha field
SDUMP screen dump
SELCTS select field
SETOF set switches off
SETIN set switches dependent from an index
SETIX set index dependent from a switch
SETON set switches on
SETLL set lower limit (for file processing)
SORT sort an array
SORTA sort an array
SQRT square root
SUB subtract
SYNCP set syncpoint
TAG set a label
TESTB test a bit
TESTF test field for numerical signs

CPG2 Programmer’s
Reference Manual

Page 74

TESTN test field for numerical signs
TESTT test screen name
TESTZ test zone
TIME set time
TWALD load saved TWA from Temporary Storage
TWASV save TWA on Temporary Storage
UCTRN upper case translation
UPDAT change record
USSA unqualified SSA (DL1)
WAIT waiting
WHEN characterisation of a condition (with EVALUATE)
WRITE new record
XFOOT calculate the sum of an array
Z-ADD delete and adding
Z-SUB delete and subtracting

Syntax 3810

An operation in the procedure division has four basic elements:

Condition query ON
Execution of the operation OP
Service query SV
Set conditions BD

To simplify, these elements are represented in short form in the following text. All other elements can be
used optionally with exception of the basic operation. If an element is supported optionally, so it is
represented in the text in brackets (ON). If an element is absolutely required, so it is represented without
brackets, if it is not supported, so the abbreviation is absent in the description.

An operation can be generally represented in the following form:

(ON) OP (SV) (BD)

That means: The elements of the operation are described in the order, condition query (ON), basic operation
(OP), service query (SV) and conditions (BD),whereby OP is requested while ON, SV and BD are optional.

The condition query (ON).

For almost all operations, the processing may depend from one or several conditions. If the condition query
will be renounced, so the operation is executed in each case. If any conditions are queried, so the operation
will only be processed, if all conditions are fulfilled.

Conditions can be numerical switches from 01 to 99, that are set by other operations, or program function
keys of screens or other switches (for example EF for end of file, see chapter 2260, switches).

The condition query can be generally represented in the following form:

KW (NOT) BD (AND) (NOT) BD (AND) (NOT) BD

The indication is the same for all operations and will so be indicated for the description of the operations in
the abbreviation(ON).

A condition query is always coded with the key word 'ON'. If this key word is missing and nevertheless
conditions are indicated, so misinterpretations of the compiler occur, that lead to an abend of the
compilation.

CPG2 Programmer’s
Reference Manual

Page 75

The key word 'ON' can be followed by up to three conditions, that are logically linked with 'AND'. To clarify
this in the text, the programmer can insert the word 'AND'. BD stands for the two digit condition switch. If the
operation should be executed, if a condition is not fulfilled, so the key word 'NOT' is to be set before the
condition.

Examples for condition queries:

ON 11 at switch 11
ON P1 with program function switch 1
ON NOT 12 not at switch 12
ON 11 12 at switch 11 and 12
ON 11 21 31 at switch 11, 21 and 31
ON 11 12 and 13 at switch 11, 12 and 13
ON 11 12 and not 13 at switch 11, 12 and not 13
ON NOT PB and NOT EF and NOT 10 not at PF11, not EF, not 10

The operation (OP).

For the operations, according to the type of the operation, different syntax rules apply, that are explained
during the description of the several operations. This section restricts itself to the general elements of the
operation.

An operation consists of the following basic elements:

Operations key word OC (Op. -Code)
extended OP.-Code OE
factor 1 F1
factor 2 F2
result EG
dummy words DY
operators OK

The general representation of the basic operation reads as follows:

OC (OE) (DY) (F1) (DY) (NOT) (OK) (F2) (DY) (EG)
 or shortly: OC (F1) (F2) (EG)

Operands (F1 F2 EG)

The elements F1, F2 and EG are also named operands. An operation needs in each case the operation
code, but not always all operands. Also the sequence of the operands can be different according to the
operation. So EG or F1 can stand in front of OC for different operations.

 A MULT B C F1 OP F2 E C
 C = A * B EG OP F1 O K F2

Operators (OK)

At comparation operations, an operator, that is eventually supplemented by connective textwords, can stand
between F1 and F2. For example:

IF A = B OP F1 OK F2
IF A EQ B OP F1 OK F2

CPG2 Programmer’s
Reference Manual

Page 76

IF A IS EQUAL TO B OP F1 DY O K DY F 2
IF A IS NOT GREATER THAN B OP F1 DY O K O K DY F2
DO UNTIL A IS GREATER THAN B OP OE F1 DY O K D Y F2
DO WHILE A = B OP OE F1 OK F2

Valid representation forms for operators are:

> or GT or (IS) GREATER (THAN) greater than
< or LT or (IS) LESS (THAN) less than
= or EQ or (IS) EQUAL (TO) equal
>= or GE or (IS) NOT LESS (THAN) greater equal
<= or LE or (IS) NOT GREATER (THAN) less equal
>< or NE or (IS) NOT EQUAL (TO) unequal
<> unequal

Examples for operations:

 EXCPT OP
 DO 10 TIMES OP F2 DY
 DO FROM X TO Y OP DY F1 DY F2
 MOVE TEXT TO LINE OP F1 DY F2
 X = 0 EG OP F2
 X = A + B EG OP F1 OK F2
 READ OTTO OP F2
 MAP ARTIKEL OP F2
 START F1
 START TAG F1 OP

Service query.

The service query consists of a single key word. No limitations exist for service key words, that means, that
they can also be used as names for variables. Valid key words are:

 A AFTer ARRay BEFore BLAnk C Sign
 CHEck CLEar D E Extern F H
 HEX I INDex INPput K L LEFt
 LOOP LOW N O P R RIGht
 ROLl ROUnded RUNden S SAVe SEConds T
 TIMe U UPDate V Variable 1

It is enough to enter the capital letters (one or three positions). In case of doubt, the first position will be
accepted as key word. Consequently, the CPG compiler detects possible errors.

Output Division 3900

In the output division is described, how and where the data fields will be output. We distinguish here 'record
descriptions' and 'field descriptions', depending from eventually given units- or field specific descriptions.

Data Dictionary in the Output Division 3905

With the entry of the data dictionary in the record description, you reach, that no field descriptions must be
coded. Data Dictionary in the output division is also described in chapter 2600.

CPG2 Programmer’s
Reference Manual

Page 77

Usually applies as syntax rule, that the complete data dictionary parameter will be indicated directly after the
file name. The other key words are attached according to the rules indicated below.

Record Description for EXCPT Outputs (files of all type) 3910

The first statement of an output description is always the record description, that means, the indication of the
file, to which the data fields will be transferred.

The key word 'FILE' always starts such an output description. The name of the file follows directly after the
key word.

According to the type of the input/output unit, different key words can follow after the file name. In each
case, the first three letters are sufficient and the described sequence must be kept.

Disk

The key word 'ADD' indicates in disk files, that a record has to be added, 'DEL' indicates, that a record is to
be deleted. 'ALG' means, that the length is changed for files with variable record length.

 - FILE PLATTE DD ADD
 - FILE PLATTE DD TYPE LX ALG
 - FILE PLATTE DEL; * No field de scription at DEL

For files with variable record length, it is possible to determine via the record description of the output
division, how long an output record has to be. With the key words ADD-VAR, ALG-VAR or with a VAR in
relation to ADD or ALG, you reach, that the actual length of the output record is determined by the CPG
internal field CPGVRL.

 - FILE PLATTE ADD VAR FALL1
 - FILE PLATTE DD ADD-VAR FALL2

Temporary Storage

The entries 'I' and 'A', described as follows, should only be coded exceptionally. The two processing modes
'Independent' and 'Auxiliary' are normally already given in the file description (FILES DIVISION and data
dictionary).

The key 'I' indicates, that the data can be read from the storage area by all terminals, and will be stored in
the main store. The entry 'A' causes, that the output data can only be read again by the same screen and is
stored in the auxiliary storage.

If none of these entries is made, the output data is stored in the main storage and can only be read by the
output terminal.

Tapes

At the output on tape files, no additions like ADD, DEL and ALG are supported.

For tapes with variable record length, it is possibile to decide via the record description of the output division,
how long a record should be. With the key word VAR you reach, that the actual length of the output record is
determined by the CPG internal field CPGVRL

- FILE TAPOUT VARIABEL;

CPG2 Programmer’s
Reference Manual

Page 78

Printer

For printer files, line transportations are indicated with SPAce. Both entries (for line transportation before
and after printing) must follow after the key word.

- FILE DRUC SPACE 2 1
- FILE PRNT SPACE # 3

Channel skips are indicated with the key word 'SKIP', that is followed by a 2-digit literal for the channel.

- FILE DRUC SKIP 01 ON 11

The channel (in the example 01) must be described in the forms division, if the program is executed online,
or if the program is executed in the batch and the printer contains no SYS number.

Screen. - (old processing type!) (not necessary when using QSF)

1. UNFormatted output see below.
2. ERASE clear screen before the output
3. U or UNProtected clear all unprotected fields
 H or BEEP horn
 M or MODified do not release modified fields
 K or L, N, O, S = combinations according to the table 7030

Unformatted outputs define the output position relatively to the screen start. So line 2 column 40 becomes
position 120 for instance.

Unformatted outputs are read in with SELECT CPGTIO.

In the files division, a record length must be indicated for an unformatted screen, that is as big as the biggest
output position. For the screen, that has 24 lines and 80 columns, for example the record length must be
1920.

A peculiarity is furthermore, that the programmer himself is responsible for the construction of this output
during an unformatted output without Erase (on an unformatted screen). Blanks have to be set for all not
described positions.

Conditions

If the output only has to be output under one or several conditions, the instruction 'ON' followed by up to
three condition switches must be coded.

 - FILE BILD ERASE ON 01.
 - FILE PLATTE ON 01 AND 02 AND NOT 03.

An up to 6-digit name may follow after the conditions, which can also be indicated instead of the switches.
This name works exactly like the indicators.

Record Description for Field Processings 3915

Field processings are described in the output division with record description and field description(s).

Data fields can be edited in the main storage. Therefore, the key word FIELD is always used for the field.
Field edits are not processed with the instruction EXCPT, but with the instruction EDIT.

CPG2 Programmer’s
Reference Manual

Page 79

The syntax is different to the file output: If you want to describe different output possibilities for a field, you
work in the procedure division as well as in the output division with an EDIT name, that is indicated with the
key word TYPE.

The field edit can be taken out of the data dictionary. The key word TYPE can have different meanings: It
can be set for the record type of the data dictionary, but also for the name of the field processing. For
reasons of the clearness, the key word SELECT-type may be entered for the name of the field processing.

Examples for record descriptions .

 - FILE PLATTE
 - FILE PLATTE DD ADD NEWRECORD
 - FILE PLATTE DEL TAKEAWAY
 - FILE PLATTE DD TYPE XY REWRITE

 - FIELD DATUM
 - FIELD CPGCOM TYPE PROG3

Field Descriptions 3920

If data dictionary is not used, one or several field descriptions to every record description must be coded. On
the belonging record description follows a field output description for each field to be output. If it is a
variable, it first contains the name of the field to be edited. Then follows the output position. For screen files,
the position will be indicated in the form 'LLCC', where LL indicates the output line and CC the column within
the line.

- FELD 25; the last byte of the variable 'FELD' is set into position 25
- X 1240; the last byte of the variable 'X' is set into line 12, position 40, if the file is a screen

file.

Literals are locked up in inverted commas and are set behind the position statement.

 - 542 'TEST'
 - 1247 'THIS IS A TEXT'

If the field should only be output under one or several conditions, so the instruction 'ON', followed by up to
three condition switches is set in front.

 - ON 15 FELD 25
 - ON 11 AND NOT 12 AND 13 1242 'TEST'

Note:
If a literal smaller than 99 shall be output under a condition into an output position, for example on 15 in
position 25 the literal 'Test', the combination

 - ON 15 25 'Test'

is not clear for the compiler, because 25 may be a condition as well as a position. In this case, a blank (#)
has to be entered to separate conditions and position.

 - ON 15 # 25 'Test'

For field descriptions, the following sequence is to keep absolutely:

CPG2 Programmer’s
Reference Manual

Page 80

 1. Conditions introduced by 'ON' (alternatively)
 2. Field name (alternatively)
 3. Output position (necessarily)
 4. Literal, pattern (alternatively)
 5. Key word (alternatively)

Key words for attributes, edit codes, colors, EH-values, cursor etc, can be attached in any sequence. To the
key words listed as follows, always the 3 first letters, for example ATT for ATTRIBUTES, are enough.
Following key words are valid:

ATTribut followed by a letter (see table, p.7020)

EDItcode followed by a character (see table, p.7070)

Colors: WHIte, RED, BLUe, GREen, YELlow, PINk, TURqoise ,

EH values BLInk, REVerse, UNDerscore ,

Formats PACked, BINary, HEXadecimal, LOGical ,

Other CURsor, BLAnk, VARiable cursor

The key word 'PAC' indicates, that the field is packed at the output. 'BIN' is set for binary packed output, and
'HEX' for hexadecimal output.

The key word 'ATT' behind the position statement indicates, that the following letter is a field attribute.
Furthermore colour indications (BLUE, GREEN, PINK, RED, TURQOISE, WHITE, YELLOW) or extended
highlight codes (BLInkend, REVersiv, UNDerlined) follow.

 - FELD 520 ATTRIBUTE A WHITE BLINK;
 - X 630 ATTR N;

The key word 'EDIT' indicates, that the following letter is an edit code.

The key word 'BLAnk' causes, that the affiliated field after the output will be deleted.

The key word 'CURsor' sets the position indicator at screen files into the firstposition of the field. 'VAR' or
'VARIABLER-CURSOR' will be entered as key word for the variable cursor.

The key word 'ARRay' enables, to describe not indicated arrays, (in that the compiler error message will be
suppressed).

The key words LAST, CONFIRM and NOWAIT for LU6.2-connections are supported. For distributed
transaction processing with CPG, a separate manual exists.

Note: principally applies 'inverted commas before key words'

For example for a hexadecimal output

 - 1017 '0000' HEX

For example for literals

 - 0211 'KDNR'
 - 0217 '.....' CURSOR ATTRIBUT N

For example for patterns

 - NUM 2366 '. 0, -' ATTR P BLUE

CPG2 Programmer’s
Reference Manual

Page 81

Examples:

 - FELD 110;
 - FELD 110 PACKED;
 - 2 'TEXT'
 - 5 '5C5C00001C' HEXADEZIMAL
 - FELD 110 EDIT2
- FELD 110 '*' EDIT2

Data formatting Attribute Bytes for 3270 3950

A field on a screen of the type 3270 is defined as the area between two attribute bytes.

Before and behind each field and each literal, which are output on the screen, an attribute byte is set.

The output field as well as the literal always finishes on the indicated position. The closing attribute byte of
the field is on the position behind the indicated position. The closing attribute byte has the characteristic
'protected, skip'. Through the indication of a following field as well as a literal, this attribute byte may be
replaced (overwritten) with the initial attribute of another field.

The attribute standing before a field defines the characteristics of the field. If no attribute code is indicated,
the field gets the standard attribute 'S' (protected, skip).

If no name of an output field is indicated, nor a literal, then only the attribute will be output on the screen.

The possibility to output several attribute bytes on the screen can be used for the following purposes:

 a) define fields on the screen without the output of field data.

 b) change the present attribute for a field on the screen.

 c) set the cursor on another screen position (here an attribute byte in relation with the key word 'CURsor' is
indicated).

If the attribute 'V' is indicated for a field or a literal, so the initial attribute byte for the field is taken out of the
one digit field CPGATR. This must be defined in the program and be set on the corresponding hardware
attribute code for the field, before the output operation takes place.

If 'V' is indicated and the output description does not contain any field name and no literal, so the content of
CPGATR is output as attribute byte on the indicated position.

The CPG attribute code 'F' means, that the first byte of the field to be output, as well as the literals, should
be valid as attribute bytes. It must be a valid bit combination for attributes for 3270.

Alphanumeric Data in the TWA 3952

Alphanumeric data can be output on the screen as literals or as variable fields. The length of the output data
corresponds to the length of the field in the TWA as well as the length of the indicated literal.

IF in a literal '&'-signs as well as inverted commas are output, so they must be double indicated.

CPG2 Programmer’s
Reference Manual

Page 82

Literals and fields, that need several lines, can be output of the screen.

The maximum length of an alphanumeric field is 256 bytes.

Numerical Data 3954

Fields stored in the TWA are put out on the screen in character format. Before the output, the fields become
unpacked.

The length of the output data on the screen corresponds to the TWA-length of the field (packed) multipled
with 2 minus 1, that means, CPG2 reserves place for all digits, that the field can contain.

If a field is defined with a straight number of digits,an additional digit must be previewed.

CPG does not suppress the zeros in numerical fields, which are output in this way.

The suppressing of zeros is possible by the specification of a pattern for the field or by the entry of an edit
code.

Patterns 3956

A pattern for the description of the output of a numerical field can be indicated just behind the output position
in inverted commas. Patterns are used for the following purposes:

a) suppression of leading zeros up to the indicated position in a field.

b) the output of one or several characters right from a field, if its content is negative.

c) insertion of blanks left from the field.

The length of the data edited on the screen, corresponds to the length of the pattern (i.e. the number of
characters between the inverted commas) plus 1. The additional character precedes the data and will be
shown on the screen as leading blank.

Edited fields are processed from the left to the right. The digits of the field from the TWA will be set on the
positions indicated in the pattern as blank or zero. If the field in the TWA contains more digits, than the
pattern can take, data will be cut off on the right. Unvalid results are possible, if the pattern can take more
digits than the field contains.

Suppression of zeros 3957

Through zeros in the pattern, the suppression of leading zeros is controled. All appearing leading zeros will
be suppressed and replaced by blanks during the processing of the field, up to the position, on which is
placed the zero in the pattern.

If there is a significant digit in the field in front of the zero, so the suppression of zeros finishes automatically.

Beside the suppression of leading zeros, this function also suppresses all insertion signs, which are
specified as part of the pattern in front of the zero. If a significant digit is detected, so the suppression of the
filling signs finishes at this position.

CPG2 Programmer’s
Reference Manual

Page 83

If there is no zero indicated in the pattern, so the suppression of zeros is valid up to the end of the pattern.

Insertion Signs 3958

/ Slash
, Comma
. Point are typical examples for insertion signs.

They are output like specified in the pattern, if they are not suppressed in
the input data because of leading zeros.

A '&' in the pattern defines a space (blank) for the output. Within a pattern,
the '&' must be set only once per blank.

Characterisation of negative Amounts 3959

The signs, which are indicated right in the pattern before the closing inverted comma, are only output, if the
content of the field is negative.

If the content of the field is positive, one or several blanks will be output instead.

Typical signs for negative amounts are '-' and 'CR'.

Insertion of leading Blanks 3960

All input signs indicated left in the pattern are suppressed with the edit and are replaced by blanks.

With this function, blanks can be inserted during the output on the screen on the left side of a field.

Length of the processed Data 3961

The number of the digits from the field in the TWA, that are taken on into the pattern, corresponds to the
necessary number of bytes for the field multiplied with 2 minus 1.

At fields, that are defined with a straight digit number, an additional left adjusted digit position must be
intended, if a pattern is therefore defined.

Examples for Patterns 3963

A field, that is defined 9-digit with two decimals, should be processed per
pattern.

CPG2 Programmer’s
Reference Manual

Page 84

Pattern values: 0 13.85 - 1234.56
no one "000000000" "000001385" "000123456"
' ' "13,85" "1234.56"
' 0. ' "0,00" "13,85" "1234.56"
' 0. - ' "0,00 " "13,85 " "1234.56-"
' 0. - &!' "0,00 " "13,85 " "1234.56- !"

Arrays 3965

From an array, alphanumerical as well as numerical data may be output to a screen.

If the whole array should be output, only its name must be indicated and the last position of the first element
as output position.

The following elements will be set on the lower line on the same sign position, until all elements are on the
screen.

If an output position is indicated, so that there are not enough lines on the screen for all array elements, that
causes errors during the processing.

If a fixed index is indicated to the name of the array, for example FG(10), the output of single array elements
is possible of course. In this case, each element can and must be output with an own output description.

For numerical arrays, a pattern can be indicated behind the position. The array is processed element par
element according to this pattern. An element with the value zero causes, that the entire field contains only
blanks at the output.

The place occupied by an element is just as big as at each other alphanumerical or numerical field with the
same type and the same length.

Overlapped fields 3967

The output descriptions for a screen file will be processed sequentially from above downwards according to
their sequence in the program.

So data can be output, so that they are overwritten by a following field or a literal. This does not lead to
processing errors and can be meaningful, if complex screen forms are processed.

Field editing 3969

The field edit through the call of an EDIT operation in the procedure division is explained in chapter 2420.

The specifications for the field processing will be treated as own subroutines within the output division. They
will be ignored while the processing of the output descriptions by an EXCPT instruction.

If the processing of an output description for the field edit is started, it will be branched to the output
descriptions for the relevant field. These will be processed sequentially from above downwards, until the
next record description is reached or the end of the source code. At this point, will be rebranched to the
instruction in the procedure division that follows directly after the EDIT instruction.

CPG2 Programmer’s
Reference Manual

Page 85

Protection Star writing 3970

Protection star writing is used for example to write checks, to make an additional altering of the printed
amount impossible. Therefore, the processed numerical amount field will be filled up left adjusted with stars
(*).

In the CPG2, the protection star writing is supported additionally to the edit code. Only the literal '*' must be
indicated instead of a pattern.

Example:

The field SUMME with the content 98765.55, is put down with the editcode K (suppression of zeros, 11-
places, thousand-point, minus sign) and protection star writing. SUMME is agreed as comma numerical
field, therefrom two decimal places.

Output: * * * * * 98,765

Syntax: - SUMME 1020 '*' EDITCODE K

Peculiarity: The protection star in combination with the edit code Y for date-
processing causes, that blanks are indicated at empty date fields, and that lea-
ding zeros are suppressed.

Flowing Monetary Signs 3972

Another possibility of the protection offer the flowing monetary signs. With it, a dollar-sign ($) is set directly
before an amount so that a later possible manipulation of the amount is prevented.

The flowing monetary sign is supported in the CPG2 additionally to the edit codes. The literal '$' must be
entered instead of a pattern.

Note: For the flowing monetary sign, the output field will be extended internally by one byte (for the dollar
sign).

Example: The field SUMME with the content 98765,55 is put down with the editcode K (suppression of
zeros, thousand point, comma, minus signs) and a flowing monetary sign. SUMME is defined as 11-places
numerical field, therefrom two decimal places.

Output : $98,765.55

Syntax : - SUMME 1020 '$' EDI K

CPG2 Programmer’s
Reference Manual

Page 86

Operations

For the operations the following expressions are used:

DY Dummy words to simplify the readability of the programm, the words: ALL BY FROM INTO IS OFF

ON THAN THEN TIMES TO and WITH are reserverd.

EG Result as field name or array with or without index,according to the operation.

FN File name in file processing operations. The file must be defined in the FILES DIVISION.

F1 Factor 1 as field, array with or without index or as literal according to the operation.

F2 Factor 2 as field, array with or without index or as literal according to the operation.

OC Operator for comparisons at DO WHILE, DO UNTIL and IF operations: Possible entries: > < =

>= => <= =< >< or <>.

OP Operation code.

SV Service as complement to the operation, e.g. H or ROU for rounding.

Entries in brackets are optional and will only be entered as the need arises, e.g:

EG = F1 * F2 (SV) here the service (ROUnded) is optional.

Fields

for description of variable data, e.g.: KDNR, KEY, BETRAG, WERT. A fieldname may be max. 6 characters
long.

Arrays

Arrays are supported in a part of the operations. Either only the name of the array may be given, if the whole
array (element for element) shall be processed (Full Array support) -or- fixed or variable index may be given
in brackets (indicated operations), e.g: FGR(10) or PAGE(X).

Literals

for alphanumeric values: '*', 'EF' or 'wrong switch'
as hexadezimal value: X'00', X'1DF0' or X'FFFF
for numerical values -10 123,45 or 10

= assigning values

EG OP F2 (SV)

EG Field name of the result field
OP '='
F2 Field or literal
SV 'H' or 'ROUnded' for rounding with num. fields

CPG2 Programmer’s
Reference Manual

Page 87

Examples:

X = 1
A = B ROUNDED
STARS = '****'

Purpose:

Into the result field a literal or contents of a field can be transferred. If EG and F2 both are numeric, then EG
is deleted before the transfer. If EG and F2 both are alphameric, then a transfer takes place as with MOVE-
LEFT (see below). IF EG and F2 have different types, i.e. an operand is alphanumeric and the other one
numeric, then a transfer takes place as with MOVE-RIGHT (see below).

+ addition

EG = F1 OP F2 (SV)

EG Field name of the result field
OP '+'
F1 Field or literal
F2 Field or literal
SV 'H' or 'ROUnded' for rounding

Examples:

C = A + B
X = Y + 5 ROUNDED

Purpose:

Into the result field the sum of the contents of F1 and F2 will be tranferred. The result can be rounded.

- Subtraction

EG = F1 OP F2 (SV)

EG Field name of the result field
OP '-'
F1 Field or literal
F2 Field or literal
SV 'H' or 'ROUnded' for rounding

Examples:

C = A - B
X = Y - 5 ROUNDED

Purpose:

Into the result field the difference of F1 to F2 will be transferred. The result can be rounded.

CPG2 Programmer’s
Reference Manual

Page 88

* Multiplication

EG = F1 OP F2 (SV)

EG Field name of the result field
OP '*'
F1 Field or literal
F2 Field or literal
SV 'H' or 'ROUnded' for rounding

Examples:

C = A * B
X = Y * 5 ROUNDED

Purpose:

Into the result field the product of F1 and F2 is transferred.
The result can be rounded.

/ Division

EG = F1 OP F2 (SV)

EG Field name of the result field
OP '/'
F1 Field or literal
F2 Field or literal
SV 'H' or 'ROUnded' for rounding

Examples:

C = A / B
X = Y / 5 ROUNDED

Purpose:

Into the result field the quotient from F1 and F2 will be transferred. F2 may not be 0. The result can be
rounded.

With a division by 0 an error message (DEBUG) is displayed during the execution at the display.

ACCEPT Data record read directly

identical to CHAIN (see below)

AFOOT Calculate the average of an array

OP F2 EG (SV)

CPG2 Programmer’s
Reference Manual

Page 89

OP AFOOT or AVERAGE must be entered
F2 name of a numeric array
EG result field (name of a numeric field)
SV service: 'ROUnded', 'RUNden', 'H' for rounding
--

Examples:

AFOOT FG1 MW
AVERAGE FG1 MW ROUNDED

--

Purpose:

The average value of all fields not equal zero of a numeric array is to be calculated.

Description:

Factor 2 (F2) contains the name of the array. The result field (EG) contains the name of the field, into which
the average value shall be stored. Fields with the contents of 0 are not included into the average value
calculation.

 AFOOT FG1 MW

Contents of the array:

FG1(1) 125,00
FG1(2) 75,00
FG1(3) 85,00
FG1(4) 0,00
FG1(5) 0,00
FG1(6) 0,00

Contents of the field MW
after execution of the instruction: 95,00

AVERAGE Calculate the average of an array

 identical to AFOOT (s.o.)

BREAK Terminate a loop

OP (SV)

OP BREAK must be entered SV All , to leave interlocked loops

Purpose:

DO -, DO UNTIL or DO WHILE loop is to be terminated.

Example:

DO FROM 1 TO WERT WITH I
 :
 IF REST <= 0
 BREAK
 ENDIF
 :

CPG2 Programmer’s
Reference Manual

Page 90

ENDDO

By the instruction BREAK a DO-LOOP is terminated immediately independently of the loop condition.
BREAK branches out behind the ENDDO. The statements between BREAK and ENDDO are not executed
any longer. BREAK ALL terminates the DO processing in interlocked loops, by branching behind the END of
the outermost loop.

BEGSR Start Subroutine (not for QPG)

F1 OP

F1 name of the subroutine

OP BEGSR must be entered

Examples:

- UPRO BEGSR; *subroutine UPRO

Purpose:

Beginning of an subroutine.

Description:

Every subroutine must start with this operation. F1 contains the name of the subroutine. At the end of the
procedure division, all subroutines have to be placed in a subroutine section which may be started with a
division indicator 'SUBROUTINES' or '-S.'

CALL Call of any subroutines

OP F2 (EG)

OP CALL must be entered
F2 name of the subroutine in inverted commas
EG numerical field without decimales for the return code

Examples:

- CALL 'PHASE01'
- CALL 'PHASE07' RETURNCODE07
- PARAMETER DATEI
- PARAMETER FUNKTION

Purpose:

Any subroutine which is not written in CPG shall be called. So the communication with all software products
which have a CALL-interface is possible.

Description:

CPG2 Programmer’s
Reference Manual

Page 91

The program to be called will be indicated in inverted commas. It will be linked during the compilation to the
CPG program. A numerical field with zero decimal characters may be indicated optionally. The retun code
will be transferred into this field while the return from the subroutine.

CHAIN Read a record in random processing m ode

F1 OP F2 (SV)

OP CHAIN or ACCEPT must be entered
F1 Field name of the key
F2 File name
SV Service: 'U', 'Update', 'C', 'Check', 'P'

Examples:

KEY CHAIN DATEI
KDNR ACCEPT KUNDEN UPDATE

Purpose:

A record of a file is to be read in random processing mode.

Description:

With this operation a record of the random file specified in F2 is read with the key in F1. The length of the
code must corespond with the key length indicated in the FILES division.

If no record is found, then 'NF' is transferred for NOT found into the internal field CPGFRC.

'C' or 'Check' in SV means, that the record is checked only for availability. In this case no data will be read.

'Update' or 'U' in SV causes, that the record will be blocked for a further CHAIN for updates, until an update
is executed or the record is again released by a RNDOM. It will only be blocked on record level. With Share
option 4 or Journaling the entire VSAM-CI is blocked.

A 'P' in SV includes Check and Update. The explicit specification of both services is likewise supported.

Note: If the file is in the sequential access mode, then CHAIN operates like the operation SETLL. It will be
positioned only at the indicated key in the file, no data will be read.

CHANG(E) Exchange the contents of two fields

F1 OP F2

OP CHANG or CHANGE must be entered
F1 Field name
F2 Field name

Examples:

A CHANG B;
OTTO CHANGE HUGO;

CPG2 Programmer’s
Reference Manual

Page 92

Purpose:

Contents of two alpha fields are to be exchanged.

Description:

With this operation the contents of two data fields can be exchanged.

FELD1 CHANG FELD2

After execution FELD1 contains the value of FELD2 and FELD2 contains the value of FELD1. If FELD1 and
FELD2 are redefined, then the result is unforeseeable.

Special case: FELD CHANGE FELD * after the execution FELD has * the value x'00'.

CHECK Check file status

CHECK-VAR Check file status variable

OP FN

OP CHECK or CHECK-VAR must be entered
FN File name with CHECK or alpha field with CHECK-VAR

Example:

CHECK DATEI;
CHECK-VAR FELD;

Purpose:

The status of a file (open, closed) is to be checked, or whether the file is defined in the FCT.

Description:

In FN CHECK the name of the file to be checked will be entered and with CHECK-VAR the name of an
alpha field, which contains the file name.

As result of the CHECK operation, the following informations will be transferred to the file status CPGFRC:

' ' the file is open.
'NO' the file is not open.
'NF' the file was not found.

In the CICS the file is not in the FCT and in the batch not in the main program and not yet opened by a
module.

CLEAR Clear data to zero or blank

OP

OP CLEAR must be entered

CPG2 Programmer’s
Reference Manual

Page 93

Example:

CLEAR

Purpose:

CLEAR deletes the contents of all data fields of the program.

Description:

All alpha fields and arrays are filled with blanks and all numeric fields and arrays are set to 0.

CLOSE Close file

OP FN

OP CLOSE must be entered
FN File name

Example:

CLOSE FILE;

Purpose:

A file is to be closed.

Description:

The CLOSE operation will explicitly close a file. FN describes the file which shall be closed. The file status
can be queried in the internal field CPGFRC. 'NC' means 'not closed' and 'NF' means 'not found in the FCT'.

COM-REG Communication region

COMRG Communication region

OP EG

OP COMRG or COM-REG must be entered
EG Name of a field that is 32 characters long

Examples:

COM-REG FELD;
COMRG FELD;

Purpose:

System information is put to the program .

CPG2 Programmer’s
Reference Manual

Page 94

Description:

The operation COMRG characters a communication region at the disposal, which enables the programmer
the access to internal data of the TP-monitor. The communication region is an alphanumeric field that is 32
characters long.

From Column To Description

1 3 Operator identification (Sign On Table)
4 6 Cursor position numerically packed (170 = line 3, position 11)
7 10 Trans-id

11 12 Number of screen lines default (packed)
13 14 Number of screen columns default (packed)
15 16 Number of screen lines alternate (packed)
17 18 Number of screen columns alternate (packed)
19 21 Task number (packed)

22 22
U' = UCTRAN Upper-case translation
'N' = NOUCTRAN (yes/no)

23 26 Reserved

27 27

UCTRAN informations. 'N' = NOUCTRAN: no translation
'T' = UCTRAN Transaction (starting at CICS 2.2)
'U' = UCTRAN on: translate into uppercase letters

28 32 Reserved

The result field must contain the name of a field that is 32 characters long, which takes up the
communication area. The individual fields can be selected with a 'SELCT' operation or by redefining in the
data division.

Example:

-D
 FELD 0 * 32; * All
 OPID 3; * Operator-Id
 CURSOR 5 0; * Cursor position
 TRANID 4; * Transid
 DZEILE 3 0; * Number os screen lines def.
 DSPALT 3 0; * Number of screen columns def.
 AZEILE 3 0; * Number of screen lines altern.
 ASPALT 3 0; * Number of screen columns alt.
 TSKNO 5 0; * Task number
 UCTRNB 1; * UCTRAN byte
 FILLER 4; * Reserved
 UCTRNE 1; * UCTRAN Byte exte nded
 REST 5; * Reserved
 -C
 COMRG FELD

COMPUTE Calculation of formulas (QPG only)

With the instruction COMPUTE the formula translator is called. The formula translator permits the calculation
of formulas and mathematical functions.

Examples:

COMPUTE Y = (A + B) * (C - D)
COMPUTE A = D _ 2 * 3, 14159 / 4
COMPUTE Y = SIN(X)
COMPUTE WINKEL = ARCTAN(HOEHE / BREITE)

CPG2 Programmer’s
Reference Manual

Page 95

COMPUTE POTENZ = X _ Y
COMPUTE Z = LOG(X) * SQRT(Y)

With the calculations the floating point description is used in double accuracy (15 valid digits) internally.
Apart from the basic operations (+,*,/) functions are available in a mathematical library. This contains at
present the following functions:

Power (x high y)
ARCCOS Arcus Cosinus
ARCSIN Arcus Sinus
ARCTAN Arcus Tangens
COS Cosinus
COT Cotangens
EXP Exponential function (e hoch x)
LN Logarithmus naturalis
LOG Logarithmus
SIN Sinus
SQRT Square root
TAN Tangens

With the trigonometric functions the arguments are given in degrees. With the inverse functions ARC... the
result is returned in degrees. If values are indicated in the arc measure, the result has to be found out in the
arc measure, then the conversion takes place easily with the following COMPUTE statements:

COMPUTE BOGEN = GRAD * PI / 180
COMPUTE GRAD = BOGEN * 180 / PI

The functions may not be used as variable names. With the operands no indicated variables are supported
at the moment.

The calculation of the mathematical functions takes place internally with floating point operations of double
accuracy (ca. 15 valid digits). Thereby a max. accuracy is achieved by suitable selection of the size of the
result field.

Floating point operations are also used with multiplication and division to get more place with the result.
Additionally the result becomes internally rounded.Thereby with COMPUTE the result can be more exact
with conventional operation sequence, for example:

COMPUTE X = (1 / 3) * 3; * Result X = 1
X = 1 / 3; * and
X = X * 3; * X = 0,999999 (if X has 6 decimals)

With an overflow (result > 15 integer digits) the processing will be interrupted. With call at the display the
debugging aid appears (DEBUG).

CONT(INUE) Continuing a loop

OP

OP CONTINUE or CONT must be entered

Purpose:

A DO -, DO UNTIL or DO WHILE loop is to be continued with the next loop run.

Example:

DO FROM 1 TO WERT

CPG2 Programmer’s
Reference Manual

Page 96

 :
 IF FELD = 0
 CONTINUE
 ENDIF
 EDIT PAGE
ENDDO

The loop will run through according to the loop condition. In the case FELD = 0 the operation EDIT will not
be executed. CONTINUE branches back to the appropriate DO instruction.

CONVERT Converting an alphanumeric field

CONVT Converting an alphanumeric field

OP (F2 INTO) EG (SV)

OP CONVERT or CONVT must be entered
F2 Name of the field, which shall be converted
EG Result field (INTO must be coded)
SV CHAracter, DATe, HEX, LOW, SEConds, TIMe, U, Year

Examples:

CONVERT A1
CONVERT A1 INTO A2 HEXADECIMAL

Purpose:

The contents of an alphanumeric field is to be converted. For the conversion of time and date informations
also numeric operands are permitted.

Description:

CONVERT A1 translates in A1 lowercase letters into uppercase letters

The service functions have the following effect:

LOW (Lower Case translation) translates uppercase letters into lowercase letters. HEX translates characters
into its half bytes (EBCDIC description), e.g. the letter A into c1. CHA combines two hexadecimal values to a
character, e.g. C1 to
A.

Date-conversion (DATe, U and Year):

With DATE and Year the two operands must be of the same type and of the same length. The following
lengths are supported:

numeric 6,0 and 7,0 Contents: (0)T TMMJJ
numeric 8,0 and 9,0 Contents: (0)TTM MJJJJ
alphanumeric 6 Contents: T TMMJJ
alphanumeric 8 Contents: TT. MM.JJ
 or : TTM MJJJJ
alphanumeric 10 Contents: TT.MM .JJJJ

DAT exchanges year and day, so that the year is in the first characters of the field after the operation.

U converts a date of the ISO format jjjjmmtt into the standard format tt.mm.jjjj. The result field must be 8 or
10 characters alpha and factor 2 numerically (8.0 characters).

CPG2 Programmer’s
Reference Manual

Page 97

Y for Year is needed, if the year is located in the first four characters of the field. YEAR is the inverse
function of DATE. (with two characters years the service function DATe is sufficient for both conversion
directions).

Conversion: Time <-> Seconds (SECs, TIME of conversion).

The time is located in a field, which is defined numerically from 5,0 to max. 9,0. The two last characters are
interpreted as seconds, the last but one as minutes and all further as hours. The max. number of seconds,
which is supported during the conversion is 359,999,999 in a numeric field defined with 9,0.

SECs translates a time-of-day or a value (in hours, minutes and seconds) into the number of seconds. If the
number of seconds or minutes is greater 59, then the result field is set to zero.

TIME translates a number of seconds into a current value.

The result field is optional.It must be available however with the services HEX, CHA, SECS and TIME.For
the indication of the result field the keyword INTO must be indicated. During the processing with EG the
origin field remains unchanged in F2. The compilation is executed left justified in the length of the shorter
operand.

For the entries in F2 and EG applies:

• Literals are not permitted
• The operation is indicatable in both entries
• If both entries are to be made and one of them is a not indicated array, the other must also be a not

indicated array.

DEBUG Program testing aid

OP (F2)

OP DEBUG must be entered
F2 ON or OFF for switching DEBUG on or off

Examples:

DEBUG
:
DEBUG ON
:
DEBUG OFF

Purpose:

1. A test mode is displayed at the screen. (QPG only)

2. The possibility of testing with DEBUG is switched on or offfor a program section.

DELC Delete a character

OP F2 EG (SV)

OP DELC must be entered
F2 the character which shall be removed as literal

CPG2 Programmer’s
Reference Manual

Page 98

EG name of an alpha field or element of an array
 or the name of an alphanumeric array.
SV A for alternative array processing

Examples:

DELC '0' FIELD
DELC X'FF' INPUT
DELC '*' FG A

Purpose:

Delete a character from an alphanumeric field.

Description:

With this operation a character can be deleted from an alpha numeric field. All following characters are
shifted one place to the left, into the last place a blank is inserted.

Behind the operation code DELC the character which can be removed is entered in inverted commas or
hexadecimal in the form X'00'. Behind it the name of the field which shall be processed is entered.

Example : DELC '*' FIELD

Field beforehand: 'A*B**C'
Field afterwards: 'ABC '

With arrays the entire array is regarded as a connected area, i.e. removing a character, then all following
characters will also be moved together separately for each element. However if the service 'A' is
indicated,then the array will be processed by element i.e. the shifting will be achieved only within one
element of an array.

DELET(E) Delete a record

(F1) OP FN

F1 The key which shall be deleted
OP DELET or DELETE must be entered
FN Name of the file, whose record is to be deleted

Examples:

KEY DELET CPGWRK
DELETE KUNDEN

Purpose:

Delete a record of a file.

Description:

With DELET a record of a file is deleted, so that it cannot be found again.

CPG2 Programmer’s
Reference Manual

Page 99

Before the DELET a key field can be indicated, whose content indicates the record which has to be deleted.
If such a field is not indicated then DELET deletes the record, which is in the moment in operating.

Behind the operation code is the name of the file from which the record is to be deleted.

DEQ(UEUE) Dequeue a program (not for QPG)

F1 OP (SV)

F1 sign, the same name how at enqueue (ENQ)
OP DEQ or DEQUEUE must be entered
SV possible entry: EXTern

Examples:

-A100 DEQUEUE
-X DEQ EXTERN
-* see also: ENQ

Purpose:

Dequeue a closed part of a program.

Description:

A part of a program closed with ENQ, may be dequeued with DEQ. For dequeuing of closed external
storage adresses the service funktion 'EXTern' is used.

Further description with examples for enqueuing see ENQ.

DISPLAY Console message

identical to DSPLY (s. u.)

DO Perform calculation specifications w ithin a DO loop

OP (DY) (F1) (OC) (DY) (F2) (DY) (EG) (SV)

OP DO, DO UNTIL or DO WHILE must be entered
F1 first matching field
OC Operator (see below, table of the operators)
F2 second matching field
EG Index. Name of a numeric field with 0 decimal characters
SV Service: 'LOOP'
SV Boolean operators AND and OR with DO WHILE or DO UNTIL
DY Dummy word: 'FROM', 'TO', 'TIMES', 'WITH'

Examples:

DO; * execute sequence of instructions
DO 10; * execute 10 times

CPG2 Programmer’s
Reference Manual

Page 100

DO 10 TIMES; * 10 times
DO 5 TIMES WITH I; * 5 times with inde x I
DO FROM X TO Y WITH I; * initial value X, final value Y
DO LOOP; * continuous loop
DO LOOP WITH I; * continuous loop w ith index I
DO WHILE A = B OR * as long as A = B or
DO WHILE C = D AND * as long as C = D and
 WHILE E = F; * as long as E = F
DO UNTIL X = 0 AND * until X = 0 and
 Y = 0; * until Y = 0
DO WHILE A EQ FGA(I)
DO WHILE A EQUAL B;
DO WHILE FGN(3) IS EQUAL TO ZAHL;
DO WHILE A IS NOT GREATER THAN B;

Purpose:

A sequence of statements shall be executed due to a comparison once or several times.

Description:

The operation DO makes possible to execute a group of statements (a DO group) once or several times.

F1 can be a numeric field without decimal characters, which contains the initial value, or with the extension
'UNTIL' or 'WHILE' a numeric or alphanumeric field or an element of an array.

F2 can be a numeric field or a numeric literal without decimal characters, which contains the delimitation
value or with the extension 'UNTIL' or 'WHILE' any numeric or alphanumeric field or an element of an array.

Note: The field type of the two factors must be alike.

In EG, if 'UNTIL' or 'WHILE' were not indicated, a numeric field without decimal characters can be entered,
into which the current index is stored during the execution of the operation.

A result field does not have to be specified. If the result field is missing, then the index is located in the field
CPGDxx, whereby xx indicates the nesting level, which is indicated in the block-diagram of the compilation
list.

If F2 is not specified, then the delimitation value is 1. In SV the keyword 'LOOP' can be entered,if the loop
should be endless.

The sequence of instructions which can be processed must be locked by an 'END' or 'ENDDO'-statement.

Table of operators:

Operator Meaning

GT > greater than F1
LT < less than F1
EQ = equal F1
NE >< <> not equal F1
GE >= => greater equal F1
LE <= =< less equal F1

DO und IF can be nested up to 20 levels.

With boolean operators AND and OR with DO WHILE or DO UNTIL the continuation line can be continued
with DO WHILE, DO UNTIL or only with WHILE, UNTIL or only with the comparison.

CPG2 Programmer’s
Reference Manual

Page 101

DO UNTIL-DATe, DO UNTIL-DATI, DO WHILE-DATe and DO WHILE-DATI permit the query of date fields
in the standard- (-DAT) or in the ISO-format (- DATI). With AND/OR date queries can be combined with the
'normal' DO UnTIL or DO WHILE queries. See also IF-DAT and IF-Dati.
DSPLY Output to the operator console

F1 OP ONLINE and BATCH

(F1) OP (EG) only for BATCH

F1 Name of the field, which contains the message
OP DSPLY or DISPLAY must be entered
EG Name of the field, which contains a message/response

Examples :

MSG DSPLY
MSG1 DISPLAY RESP

Purpose:

Output of messages on the operator console. With batch also receipt of responses of the console.

Description:

With this operation a message can be send to the operator-console.

The message is located in an alphanumeric field, which may be max. 255 characters long (in batch 64
bytes). In batch this operation is more flexible.

The field name for the message can be before and/or behind the operation code. If two message fields are
indicated, then both fields are displayed on the console.

With batch operating DSPLY waits for the input of the operator, if for EG a field was indicated. The
'response' of the console is transferred into the result field to the program.

EDIT Edit alphanumeric field

OP EG (KW FN)

OP EDIT must be entered
EG Name of the field which shall be edited
KW Dummy word: TYPE
FN FIELD name in Output Division

Examples:

EDIT FELD;
EDIT FG1(J);
EDIT ZEILE TYPE POSTEN
EDIT CPGCOM; * Output Common Area (only Co mmand Level)
EDIT CPGTCT; * Output TCT User Area (only ESA Mode)

Purpose:

Edit a field using the output division.

CPG2 Programmer’s
Reference Manual

Page 102

Description:

With this operation alphanumeric fields can be edited.Edit branches to the output division where the editing
of the field is described. If TYPE is indicated, then the field edit with the appropriate edit 'name' is executed
in the output division.

With EDIT CPGTCT during execution in the CICS the length of the TCT user area is checked. If this area is
missing or too small, the program abords.

ELIM(INATE) Replace a selected character with a blank

OP F2 (DY) EG

OP ELIM or ELIMINATE must be entered
F2 character which can be removed as literal/hex-literal
DY Dummy word FROM
EG Alphafield / -array / -element of an array

Examples:

ELIM '_' FELD
ELIMINATE X'00' FROM INPUT

Purpose:

Delete a character from an alphanumeric field and replace it by a blank.

Description:

With this operation a character in an alphanumeric field, in an array or in an element of an array can be
replaced by a blank. The character which can be replaced is indicated either as one-digit literal in inverted
commas or as hexadecimal literal in the form X '00'.

Example : ELIM '*' FELD

Field beforehand: 'A*B**C'
Field afterwards: 'A B C'

ELSE Indication of a program block in the IF instruction

OP

ELSE

The operation ELSE indicates the program branch, which will pass through within a IF group, if the condition
is not fulfilled in the IF-operation.

END End of a program block

The syntax rules of END depend on the 'Beginning' operation.

CPG2 Programmer’s
Reference Manual

Page 103

See DO and IF for detailled description.

END-EVALUATE End of an EVALUATE block

identical to ENDEV (see below)

ENDDO End of a DO-block

OP (F2)

OP ENDDO must be entered
F2 increase value as a numeric literal or field.

The operation ENDDO can be used in place of an END as conclusion of a DO block (for example for the
better documentation with nested DO and IF blocks). In F2 a numeric value can be indicated as a numeric
literal or field, by which the DO-LOOP is increased after each run. The default value is 1.

ENDIF End of an IF block

The operation ENDIF can be used in place of an END as conclusion of an IF block (for example for the
better documentation with nested DO and IF blocks).Differences to END do not exist.

ENDEV End of an EVALUATE block (QPG only)

The operation ENDEV or END-EVALUATE terminates an EVALUATE group. Example, see EVALUATE.

ENDPR Terminate a program (QPG only)

ENDPR

ENDPR is used in order to terminate a program prematurely. Then the control is returned to the calling
program.

ENDSR End internal program subroutine code (not for QPG)

(F1) OP

F1 label
OP ENDSR must be entered

Purpose:

Ending an internal program subroutine code

CPG2 Programmer’s
Reference Manual

Page 104

Description:

In this operation the program branches back to the calling instruction EXSR or PERFORM.

In front of the ENDSR a label may be putted e.g. to branch direct by to a program subroutine end with a
GOTO.

ENQ(UEUE) Enqueue a part of a program (not for QPG)

OP F1 (SV)

OP ENQ or ENQUEUE must be entered
F1 name of the label up to which shall be enqueued
SV 'EXTern' (See below, example)

Examples:

- ENQ A100
- ENQ C1 EXTERN

Purpose:

Enqueuing a part of a program

Description:

CPG programs are reentrant, that means that a program may be used at the same time from different
terminals. That means that a disk record may be changed in the same time from different places.

The operation ENQ allows the programmer to enqueue the using of a part of a program between reading or
backwriting of a sentence, until the update process is finished.

The enqueuing takes place with the operation DEQ.(See above) Per the instruction -ENQ X the program
will be enqueued for other users as long as the current user has reached the place X (that means the
instruction –X DEQ).

The service function 'EXTern' causes that on a particular place in the memory capacity, the information 'in
the moment enqueued' in the CWA accessible from all programs may be filed or called.

Example:

If in the user copy book GPGUCCUA the fields

C1 DS C
C2 DS C
C3 DS C

will be defined, a system wide protection may be reached in the program; on a 1-byte place C1 in the CSA
(common system area) may be filed the information per ENQ C1 EXTERN that C1-parts of programs able
to be closed are for the moment enqueued.

Program 1:

- ENQ C1 EXT
 :
- C1 DEQ EXT

program 2:

CPG2 Programmer’s
Reference Manual

Page 105

- ENQ C1 EXT
 :
- C1 DEQ EXT

EVALUATE Multiple alternative

OP EVALUATE must be entered

Purpose:

The EVALUATE operation is used, if (at the most) one of several alternatives shall be executed.

Description:

As operation code 'EVALUATE' must be entered. The alternatives are marked by 'WHEN' continuation
lines.The factors for the conditions can contain numeric or alphanumeric fields, field names or elements of
arrays. If a condition is fulfilled, the following statement will be processed. Afterwards the EVALUATE
instruction is finished and the program is continued behind 'END-EVALUATE'.

The condition 'WHEN OTHER' is fulfilled, if none of the beforehand WHEN-instructions were applicable. The
appropriate instructions in this case are executed and the EVALUATE is finished.

Example:

-C
:
EVALUATE
 WHEN X = 1
 : * 1. Case
 WHEN X = 2
 : * 2. Case
 WHEN X = 3 OR
 X = 4 AND
 A = 'ABC'
 : * 3. Case
 WHEN-DAT VDAT < UDATE OR
 WHEN-DATI XDAT > CPGDAI AND
 WHEN A = 'XYZ'
 : * 4. Case
 WHEN OTHER
 : * otherwise
END-EVALUATE

EXCPT Execute output specifications

OP FN

OP EXCPT must be entered
FN up to 8-digit file name

Examples:

EXCPT STOR; * Storage

EXCPT KUNDEN; * Update Kunden

Purpose for CPG: The output shall be executed.

CPG2 Programmer’s
Reference Manual

Page 106

Description: for CPG

This operation corresponds to a branch into the output-division. In the easiest case (-EXCPT.), all outputs
for data will be executed.

If the EXCPT-operation contains a name or indicators, all outputs which are locked with this names or
indicators will be executed.

Note:

All outputs which are not locked will also be executed.

Examples:

Procedure division: - EXCPT ASATZ
:
Output division: - -0; FILE ARTIKEL ON 25

Purpose: for QPG

The output definitions for the file shall be executed.Hereby a record in a VSAM file can be modified or an
output on Temporary Storage can be executed.In OUTPUT files with EXCPT a record is added, with
UPDATE files a record will be modified.

Description: for QPG

The output is executed, which is described to the file in the output division.

OUTPUT DIVISION
 FILE KUNDEN
 100 'X'; * Update 'X' po sition 100

Note: EXCPT is supported only for compatibility to the CPG and should be replaced if possible by WRITE
and UPDATE. The parameters ADD, ALG and DEL in the OUTPUT division are not supported. EXCPT is
not permitted with HL1 Dataset.

EXHM Execute HL1-Module

OP F2 (EG) (SV)

OP EXHM must be entered
F2 Name of a HL1-Module
EG Name of a HL1-Data channel
SV I : initialize module, T : I + PF-keys

Examples:

EXHM HB0001
EXHM HB0002 Channel
EXHM HB0003 T
EXHM HB0004 Channel I

--

Purpose:

A HL1-Module is to be executed.

CPG2 Programmer’s
Reference Manual

Page 107

Description:

In F2 the name of a module, which must be contained in the HL1-table, is indicated.

EG can contain the name of a data channel, which must be described in the input division. With the call of
the module all fields described under the data channel are transferred into the private TWA (Transaction
Work area) of the module; after its execution the changed contents of these fields are transferred back into
the appropriate fields of the calling program.

The service 'I' or INIT causes that the flow is continued, if the Clear key was pressed in a diolog-oriented
module.

Service 'T' contains service 'I'.Additionally program function keys can be queried.

EXHM-VAR HL1-module processing (only for use rs of CPG3)

(ON) OP F2

OP EXHM-VAR must be entered
F2 name of a 8-digit alpha field

Example:

- EXHM-VAR XHMFLD

Purpose:

A HL1-module shall be executed

Description:

In F2 the name of a 8-digit field will be indicated.It contains the name of the processing module in the first six
characters and, should the occasion arise, the private HL1-library in place 7. Place 8 rests free.

If at variable EXHM datas has to be changed between the calling and to be called module, so the called
module must take its data from the calling module.

Therefore the entry EHA for 'Shared data' must be put into the options of the called program. Then the data
between the fields with the same name and the same field distinctives will be exchanged.

EXITD Start other transaction with data tr ansfer

OP EG (SV)

OP EXITD must be entered
EG name of a data structure
SV 'T' for time (instead of time interval)
--

Example:

EXITD STRUKT

CPG2 Programmer’s
Reference Manual

Page 108

Purpose:

Start another transaction with data transfer. For example EXITD will be used to activate printer tasks.

Description:

The operation is an extension of the operation EXITI.

The basic difference is the fact that with EXITD the program will not be leaved.

In EG the name of a data structure is entered, which must be described in the Data Division as follows:

-D
 STRUKT 0 * 88; * DS: can be up to 256 charac ters long.
 TRANID 4; * 1-4 Trans-Id of the followi ng task.
 TERMID 4; * 5-8 Terminal-Id, at which t he following
 * task is started.Default: sa me terminal
 *
 ZEIT 7 0; * 9-12 Time or interval at th e point of
 * time of the instruction.Ind icates, when
 * the following task is to be started.
 TSNAME 8; * 13-20 Temp.storage name. If blank, the
 * name will be assigned by th e TP-monitor
 INTERN 4; * 21-24 will be filled intern ally by CPG.
 DATEN 64; * 25-88 data which can be tra nsferred. -
 * The user dates can be max.2 32 byte long.

The following task can read the transferred data with a READ operation on '$CPG', an CPG-internal
Temporary Storage queue. If no data are available, 'EF' is set. If no READ takes place on $CPG, then these
data are deleted automatically with the end of the task.

The service function 'T' indicates that in the characters 9 to 12 a fixed time of the data structure in the form
0HHMMSSC will be transferred. The alternative is a time interval of the EXITD instruction, e.g.20 for a start
of the following task after 20 seconds or 230 for an interval of 2 minutes and 30 seconds.

The internal field CPGFRC will be filled with 'EF', if either the required task or the addressed terminal is not
defined in the appropriate CICS tables, otherwise CPGFRC will be filled with ' '.

The following task can read the transferred data as follows:

-I;
 FILE $CPG;
 1 54 DATEN
-C;
 READ $CPG
 .

Under $CPG a pseudo TS queue is read; if it is missing, EF is set.

EXITI Call another program per interval co ntrol

(F1) OP F2 (SV)

OP EXITI must be entered
F1 Terminal-Id at that the task is to be started
F2 Transaction in inverted commas or as variable
SV N if the current task is not to be left

CPG2 Programmer’s
Reference Manual

Page 109

Examples:

EXITI 'QTF'
EXITI TRID
'DR01' EXITI TRID N

Purpose:

Call another Transid per interval control.

Description:

F2 contains the transaction identification of the program which shall be executed either as four-place literal
in inverted commas or as variable alpha field. In the second case the programmer is responsable for the fact
that the four places defined field contains a valid transaction at execution time of EXITI.

EXITI branches immediately to the following program.The called program does not read data at the start
from the screen. If the service function 'N' is set, the branch is not immediate but at the end of the running
task.

EXITP Calling another program (not for QPG)

OP F2 (SV)

OP EXITP must be entered
F2 transaction in inverted commas or program name
SV 'SAVe' TWA to temporary storage

Examples:

-EXITP TSTO24
-EXITP 'PA36' SAVE

Purpose:

Calling another program.

Description:

This operation calls up another program, defined in the program list of the TP-monitor.

1.possibility

In F2 the name of the program in which shall be branched stands as literal (inverted commas). In this case
the task rests preserved, only the program will be exchanged.

If datas have to be adopted, they are to describe identically in the data divisions of both programs beginning
at the first defined field.

Remark that no loop arises because that might cause considerable performance losts.

This operation is identical to the 'EXEC CICS XCTL'.

The service funktion 'SAVe'causes that the TWA is saved in a CPG internal temporary storage queue and
adopted in the defined length in the following program.(compare therefore the parameter TWA xxxx in the
OPTIONS statement). This save is important when multiple programs are brunched with EXPR or EXIPT
(with program name) in a Task cycle.

CPG2 Programmer’s
Reference Manual

Page 110

Look up the description in EXPR.

The operation EXITP with program name contains a RNDOM*ALL operation, except if the parameter USE is
declared in the options.

EXITP-VAR Call up an external program variable (not for QPG)

OP EG (SV)

OP EXITP-VAR must be entered
EG name of the 4- or 8 digit alphafield
SV 'SAVe' to temporary storage

Examples:

- EXITP-VAR
- EXITP-VAR TRID SAVE

Purpose:

Call up an external program (see EXITP)

EXITS Send a program (later) to another te rminal (not for QPG)

(F1) OP F2 EG (SV)

F1 terminal in inverted commas or as variable
OP EXITS or EXIT-SEND must be entered
F2 transaction in inverted commas or as variable
EG time delay as literal or as variable
SV 'T' : EG contains clock time, 'N' does not leave program

Examles:

- EXITS TRID #
- 'NONE' EXID-SEND 'TRO1' '0005' N
- 'DV14' EXIDS TRID ZEIT T
- TERM EXID-SEND 'TRO2' # N

Purpose:

Call an external program on another screen and/or in a time delay.

Description:

F2 contains the transaction of the program to be called either as 4 characters literal in inverted commas, or
as variable alpha field. In the second case, the programmer is responsible that the 4 characters defined field
gets a valid transaction at time of the EXITS.

F1 contains the terminal-ID of a screen where the transaction indicated in F2 shall be started, either in
inverted commas or as 4-digit alpha-field. In the second case the programmer must guarantee that the field

CPG2 Programmer’s
Reference Manual

Page 111

is filled with a valid Trans-ID at the time of the EXITS. To start a Non Terminal Task, 'NONE' must be
entered in F1.

In EG the time delay will be indicated either as 4-digit literal in inverted commas, or as 7-digit numerical field
with the contents 'OHHMMSS'. A literal is defined as 'HHMM'.

Note: if no time delay is wished, a # must be entered.

EXIT-TRANS Call of the next transaction

EXITT Call of the next transaction

OP F2

OP EXITT or EXIT-TRANS must be entered
F2 transaction in inverted commas

Example:

EXITT 'TST1'
EXITT TRID
EXITT ' '; * Return to CICS (only in QPG-mo dules)

Purpose:

Call next transaction

Description:

The operation EXITT starts the next CICS transaction with the indicated Transid. Modified screen fields can
be transferred afterwards with the operation MAP.

If ' ' is indicated as Transid, then will be branched to CICS from a QPG module.

EXITT-VAR Variable EXITT (not for QPG)

OP EG

OP EXITT-VAR must be entered
EG transaction in the 4-place alpha field

Example:

- MOVE 'TST1' TRID
- EXITT-VAR TRID

Purpose:

Call an external program (pseudo conversational)

CPG2 Programmer’s
Reference Manual

Page 112

EXIT-SEND Transfer of the program (later) to a nother terminal (not for QPG)

identical to EXITS (see above)

EXPR Execution of an external program (no t for QPG)

(F1) OP F2 (SV)

F1 numerical field for length of the common area
OP EXPR or EXECUTE must be entered
F2 Phase as literal (without inverted commas)
SV 'IND', 'SAVe'

Examples:

- EXPR TST001 SAVE
- EXPR PROG44

Purpose:

Call an external program

Description:

With this instruction an external CPG- (OR CICS-) program may be executed at this place of the program.
After the execution the processing will be continued with the next instruction.

The condition is that the TWA's of the called and to be called program correspond.F2 contains the name of
the program which has to be executed.

Attention that no loops arises which might cause performance-losts. This operation corresponds to the
'EXEC CICS LINK'.

The service function 'SAVe' saves the TWA of the calling program on temporary storage in a CPG internal
temporary storage queue („TERM$CPG). This should not be used by the programmer.

Example:

indicators at service 'SAVE'

- EXPR PROG2 SAVE; * instruction in the program PROG1

In PROG1 the switches 01 and 02 are set.They are also set in PROG2 after the EXPR. Switch 99 will be set
in PROG2. After returning into PROG1, there is the same condition as before the EXPR: 01 and 02 are set,
99 is not set.If the parameter TWA and the number of the characters to be adopted will be indicated in the
options division of PROG2, so all switches set in PROG2 will be transferred to PROG1 while the backjump;
that means that 01, 02 and 99 would be set in the example.

In the OPTIONS specification will be determined via the parameter TWA how much characters are adopted
from the Transaction Work Area.

If the control returns into the calling program, the same number is transferred back into the TWA of the
program to be called, that has been adopted before.

CPG2 Programmer’s
Reference Manual

Page 113

The indicators will also be adopted out of the called program. The rest of the TWA keeps its old contents,
just like before the call of the subroutine.

The service function 'INDicator' corresponds to the 'SAVe' with the difference that the indicators are not
token out of the subroutine, but from the temporary storage.

EF is set when the called program is not defined in the PPT. (not at Macro Level!).

Optionally a numerical field without decimal characters may be indicated in front of the EXPR. The contents
of this field determines the lenght during the execution, in which the Common Area is processed. (max. 4080
bytes)

AT the program combinations (EXITP, EXPR) in ESA-surroundings bigger than 16 MB, all combined
programs must lie on the same page on the 16 MB-line!

EXPR-VAR Execution of an external program (no t for QPG)

OP EG (SV)

OP EXPR-VAR must be entered
EG Name in the 8-digit alpha field
SV 'IND', 'SAVe'

Examples:

- MOVE-LEFT 'PHASE' TO PROGN
- EXPR-VAR PROGN
- EXPR-VAR PROGN SAVE

Purpose:

Call up an external program (like EXPR)

EXSR Execution of a subroutine (not for Q PG)

OP F2 (BD)

OP EXSR or PERFORM must be entered
F2 Name of a subroutine
BD Up to 3 switches may be set

Examples:

- EXSR UP1
- PERFORM DATUMSPRUEFUNG

Purpose:

A subroutine shall be executed

Description:

CPG2 Programmer’s
Reference Manual

Page 114

With the operation EXSR the program branches to the subroutine indicated in F2, which has to be
programmed at the end of the Procedure Division.

Up to 3 switches may be indicated; then they will be set before branching to the subroutine and set off after
the return from the subroutine.

FILL Fill a field with a specified charac ter

OP F2 (DY) EG

OP FILL must be entered
F2 caracter in inverted commas or as hex-literal
DY dummy word TO or INTO
EG name of an alphanumeric field

Examples:

FILL ' ' PAGE
FILL X'00' TO INFO

--

Purpose:

An alphanumeric field or an array is to be filled with a character.

Description:

With the operation FILL an alphanumeric field can be filled with any representable and not representable
character.

F2 contains the filler either as one-place literal in inverted commas or as hexadecimal literal in the form
X'00'.

Example: FILL '*' FIELD

Field beforehand '123 '
Field afterwards '******'

FIND Searching in a table

(F1) OP F2

F1 search argument
OP FIND must be entered
F2 (four characters) name of the table

Examples:

K FIND TAB1
PLZ2 FIND TAB2

Purpose:

CPG2 Programmer’s
Reference Manual

Page 115

A (externally created) table is searched for a field.

Description:

Condition is that a table was created, which can be processed with FIND. For creating such a table see
'QTS' in the manual CPG3 service programs.

F1 contains the name of a field, which indicates the column of the table and for its contents will be searched
in this column. If F1 is not indicated, then all entries of the table will be sequentially processed.

In F2 the four-characters name of the table is indicated.

If the search argument was found or not, then the status of the operation will be put into the field CPGFRC.

' ' if the argument was found.

'EF' if the end of the table was reached, i.e. the argument was not found.

GETCHANNEL Get higher Storage

GETHS Get higher Storage

GETHS

Purpose:

In a dataset the contents of the fields shall be restored in such a way, as they were transferred at the time of
the call of the superordinate program.

Description:

GETHS is used in datasets. With the programming of a logical file in a dataset the difficulty may occur, that
contents of fields which were transferred by a superordinate program, are replaced by reading operations,
for example with CHAIN before an update.

With GETHS it is possible to implement in a QPG dataset the update function also, if only a part of the fields
were transferred by the calling program.

The operation takes in each case the contents of all fields of the superordinate program, which are defined
in the program, and resets their values to the contents, that were available at the start of the dataset.

GET-UPDATE Direct data reading

identical to CHAIN (see above)

CPG2 Programmer’s
Reference Manual

Page 116

GO (TO) Transfer processing (not for QPG)

(ON) OP F2 (SV)

ON condition query (up to 3 switches)
OP GOTO or GO must be entered
F2 label
SV E enables to brunch into subroutines

Examples:

- GOTO ENDE;

Purpose:

The process shall be continued at another place.

Description:

This operation branches to the character determinated in F2.This character must be defined with a 'TAG'
operation.

- ON PF1 GOTO NEXT
 ...
- NEXT; * TAG may be leaved out !!

IF Conditional processing

OP F1 (DY) OK F2 (DY) (SV)

OP 'IF' must be entered
F1 first matching field
OC Operator, see below : Table of the operators
F2 second matching field
DY Dummy words (for example IS, THEN)
SV Boolean operators AND or OR

Examples:

IF A = B; * if A = B
IF A GT B AND
IF SUMME > FG(IND) OR
SUMME < 10000
IF A IS <= B;

Purpose:

One or two program sections are to be executed (or not) as the result of a comparison.

Description:

The IF operation enables the execution of a group of statements on the condition, that a consistent relation
between F1 and F2 exists. The group is concluded by a END(IF) - statement.

CPG2 Programmer’s
Reference Manual

Page 117

IF TYPE = 'KREIS'
 PI = 3,14;
 X = D * PI;
END

If required, also an alternative branch can be passed through, if the relation does not exist. This is caused by
the operation 'ELSE', which optionally can be inserted between IF and END statement and which seperates
the IF-branch from the ELSE-branch.

IF TYPE = 'KREIS'
 PI = 3,14;
 X = D * PI;
ELSE
 X = D * D
END;

Table of the operators :

Operator Meaning
GT > GREATER THAN F1 greater F2
LT < LESS THAN F1 less than F2
EQ = EQUAL F1 equal F2
NE >< <> NOT EQUAL F1 not equal F2
GE >= => GREATER EQUAL F1 greater or equal F2
LE <= =< LESS EQUAL F1 less or equal F2

In connection with the boolean operators AND and OR the following syntax rules apply:

To a logical combination of IFs always belongs only one END(IF). OR and AND are always behind the IF
statement.

Examples:

IF A = B AND; * and-connec tion
IF B > C
 EDIT INFO1
END
IF KDNR > ' ' OR * or-connect ion
IF SUMME > 0 OR
IF X = 0
 EDIT INFO2
ENDIF
IF A > B AND * and-/or-co nnection
IF A > C OR
IF A = B AND
A = C OR
A = D AND
C = 0
 EDIT INFO3
ENDIF

AND and OR can be used mixed. Thereby the rules of the mathematical propositional calculus apply.
Shortened: AND binds more than OR. So the example above is clear. EDIT is executed, if one of the two
AND connections is true. IF does not need to be indicated in continuation lines.

DO and IF can be interlocked up to 20 levels .

CPG2 Programmer’s
Reference Manual

Page 118

IF-DAT Comparing date fields

OP IF-DAT or IF-DATE

F1 name of a date field
OK matching operator (see IF)
F2 name of a date field
BO logical linking with AND and OR

Examples:

IF-DAT LOEDAT > UDATE
IF-DAT ALPHA8 < NUM20

C LOEDAT IFGT UDATE D
C ALPHA8 IFLT NUM20 D

Purpose:

Comparison of date fields which are filled in the form ddmmjj (day, month, year). By using IF-DAT the
converting of the fields before the comparison is not necessary.

Description:

IF-DAT compares the fields CPGWD1 and CPGWD2, which contain internal the date 8-characters
alphanumeric in the ISO-format.

IF-DAT may compare alphanumeric and numeric fields with each other, even if lengths and/or types are
different. The matching fields will be converted internally into the 8-characters CPGWD-fields. If the field
lenghts of the matching field does not allow any values for month and/or days, these will be internally
replaced by '01'.

Example:

A 2-digit field that contains the value 97, becomes for the IF-DAT CPGWDx with the value 19970101.

Note:

IF-DAT does not examine the matching fields. The programmer is responsible that the fields are available in
the right format.

Supported formats for IF-DAT

CPG2 Programmer’s
Reference Manual

Page 119

Length alpha numerical with 0 decimals internal value
2 97 97 19970101
3 97 19970101
4 1297 1297 19971201
5 Dez 97 1297 19971201

 Dez 97 11297 19971201
 21297 20971201

6 311297 311297 19971231
7 311297 19971231

 1311297 19971231
 120502 20020512
 1120502 19020512
 2120502 20020512

8 31121997 31121997 19971231
 31.12.97 19971231
 31.12.97 19971231

9 31121997 19971231
10 31.12.97 19971231

 31.12.97 19971231

Basically the internal routine operates according to the rule that transferred data are not changed. If a
matching field is e.g.defined with 4-characters alpha with the value '0097', then a value'01001997' is
internally processed.The (missing) day is replaced by '01', the (wrong) month '00' will not be modified.

With odd number numeric fields the first place stands for the millenium: 0 or 1 for 1900, 2 for 2000.

The IF-DAT-operations operates with the sliding window technique with a default value of 30. That means,
years greater than 30 are assigned to the century 19xx, years smaller and equal 30 to the century 20xx.
Another window can be given in the customer configuration (CPGURSIT, see CPG installation).

IF-DATI Compare date fields in the ISO-forma t

OP F1 OK F2 (BO)

OP IF-DATI
F1 first comparison date
OK comparison operator (see IF)
F2 second comparison date
BO logic connection with AND and OR

Examples:

IF-DATI LOEDAT > CPGDAI
IF-DATI ALPHA8 < NUM20
IF-DATI LOEDAT > CPGDAI AND
IF-DATI DATUM > 991231 OR
VDAT < '000101' AND
IF BETRAG > 0

Purpose:

CPG2 Programmer’s
Reference Manual

Page 120

Comparison of date fields, which are present in the ISO-format, independent of the length. That means in
particular, that comparisons of dates with up to six-characters date fields functionate for the change of the
millenium.

Description:

IF-DATI corresponds to the operation IF-DAT, however with the difference, that here date values are
compared in the ISO-format YYMMDD.

Supported formats for IF-DATI (by the example 31.12.1997):

Length Alpha Numeric with 0 Decimals internally
2 97 97 19970101
3 97 19970101
 197 19970101
4 9712 9712 19971201
5 97.12 9712 19971201
 97/12 19712 19971201
6 971231 971231 19971231
7 971231 19971231
 1971231 19971231
8 19971231 19971231 19971231
 97.12.31 19971231
 97/12/31 19971231
9 19971231 19971231
10 1997.12.31 19971231
 31.12.97 19971231

IF-DATK Compare date fields with calendar da y in ISO-format (not for QPG)

OP F1 OK F2 (BO)

OP IF-DATK
F1 name of a 5- or 7-digit date field
OK matching operator
F2 name of a 5- or 7-digit date field
BO logical linking with AND and OR

Purpose:

Comparison of calendar days, which are placed in the form jjttt or jjjjttt in a 5- or 7-digit alphanumerical or
numerical field.

Note:

This operation is at first a moving help for the change of the millenium. After the year 2000 the operation IF
will be sufficent (like now) for the query.

Internally the datas jjjjttto will be available and compared.

The operation is not placed at the disposal of the CPG.

CPG2 Programmer’s
Reference Manual

Page 121

JLB Justify left, and fill up with blank s

OP F2

OP JLB or LEFT-SHIFT must be entered
F2 name of an alphanumeric field

Example :

JLB FIELD
LEFT-SHIFT FIELD

Purpose:

Left shifting of a contents of a field.

Description:

With this operation the contents of an alpha field will be shifted in such a way, that the first character not
equal to blank is put in the leftmost place of the field after the execution. The field is filled up with blanks to
the right.

Example: JLB FIELD

Field beforehand 1. ' 123' 2. '1 2 3'
Field afterwards '123 ‘ '1 2 3'

Note:
Example 2 describes the exact mode of operation of JLB: The blanks are not only sorted to the right;
Character strings remain unchanged, even if they include blanks. In order to obtain the same result as in
example 1, a DELC ' ' FIELD must be programmed before the JRB.

JRB Justify right and fill up with blank s

OP F2

OP JRB or RIGHT must be entered
F2 Name of an alphanumeric field

Example :

JRB FIELD
RIGHT FIELD

Purpose:

Right shifting of a field.

Description:

With this operation the contents of an alpha field can be shifted in such a way, that the last character not
equal to blank is put in the rightmost place of the field after the execution. The field is filled up with blanks
from the left.

CPG2 Programmer’s
Reference Manual

Page 122

Example: JRB FIELD

Field beforehand 1. '123 ' 2. '12 3 '
Field afterwards ' 123' ' 12 3'

Application:
Margin alignment for text editions, unpacked numeric data, etc..

Note:
Example 2 describes the exact mode of operation of JRB: The blanks are not only sorted to the left;
Character strings remain unchanged, even if they include blanks.In order to obtain in this case the same
result as in example 1, a DELC ' ' FIELD must be programmed before the JRB.

JRC Justify right and fill with specifie d character

OP F2 EG

OP JRC or RIGHT-CHAR must be entered
F2 character, with which shall be filled up, in inverted commas
EG Name of an alphanumeric field

Example :

JRC '*' FIELD
RIGHT-CHAR '-' FIELD2

Purpose:

Right shifting of a field.

Description:

The operation JRC operates like JRB. The blanks sorted to the left are replaced by the character, which is
indicated in F2.

Example: JRC '*' FIELD

Field beforehand '123 '
Field afterwards '***123'

JRZ Justify right and fill up with zeros

OP EG

OP JRZ or RIGHT-ZERO must be entered
EG name of an alphanumeric field

Example :

JRZ FIELD
RIGHT-ZERO KDNR

CPG2 Programmer’s
Reference Manual

Page 123

Purpose:

Right shifting of a field.

Description:

The operation JRZ operates like JRB. The blanks sorted to the left are replaced by zeros.

Example: JRZ FIELD

Field beforehand '123 '
Field afterwards '000123'

LEFT-SHIFT Justify left, blanks to the rear

identical to JLB (see above)

LIST Output of externally described lists

(F1) OP F2 (EG) (SV)

F1 Printer name (only online necessary)
OP LIST must be entered
F2 name of a QTF-document
EG name of a section in the print document
SV P=List Phase, I=Phase if the document is missing

Examples:

'L86C' LIST KUNDE
DRID LIST DOKUM5 HEADER
DRID LIST QPG$L OPCODE

Purpose:

Printing a list, which is described program-externally in the QTF (Quick Text Facility).

Description:

In F1 (except during batch-processing and with direct printing in the CICS) the printer name must be
indicated as a literal or as a field.

In F2 the name of the QTF document, which contains the description of the list is indicated. This document
must be stored in the library LIST of the QTF. A '$'-Character in the document will be replaced by the
language code (QTF) of the user. So the program can be used without complex programming for the valid
languages (at present D=German, E=English).

Additionally the name of a section can be indicated, a section is a part of a document.

The current linecounter can be queried after the LIST operation, if the field CPGLCT (3.0 characters) is
defined in the program. Then CPGLCT can be used e.g. for the OVERFLOW control.

CPG2 Programmer’s
Reference Manual

Page 124

LIST-VAR Variable programming of the LIST com mand

OP EG (SV)

OP LIST-VAR must be entered
EG Name of a 32-characters alpha field
SV P=List Phase, I=Phase if the document is missing

Purpose:

The LIST command (described as above) shall be variable programmed. The necessary data are inferred
from the 32-characters field at the run time with the following structure (all partial fields alpha).

Columns 1 - 8 Document
Columns 9 - 14 Section
Columns 15 - 18 Printer-Id
Columns 19 - 22 Library
Columns 23 - 23 Printer Exit (look QTF-Manual)
Columns 24 - 24 Translate (N, 1 or 2)
Columns 25 - 25 Phase-Processing (P or I)
Columns 26 - 26 Automatic new page (S)
Columns 27 - 32 not yet used

For detailed description, see QTF manual.

LOADT Load the contents of a screen

LOADT-VAR Load the contents of a screen variab le

OP F2

OP LOADT or LOADT-VAR must be entered
F2 Name of a Temporary Storage Queue

Examples:

LOADT TS01
LOADT 'HUGO'
LOADT-VAR FELD

Purpose:

Loading the contents of the screen which has been saved with SAVET.

Description:

This operation writes back on the terminal the contents of the screen (see below) saved with SAVET. The
name of the Temporary Storage Queue must be indicated, on which the data were stored with the operation
SAVET. The name will be indicated as a four- characters literal for LOADT or for LOADT-VAR in a field, that
is defined four-characters alphanumerically.

CPG2 Programmer’s
Reference Manual

Page 125

The operation LOADT can only be used together with SAVET, however it is not necessary to use the two
operations in the same program.

With dialogue oriented programming mode, LOADT does not stop the program. Therefore a screen must still
be read explicitly.

Note:
The reconstructing of the colours is only guaranteed, if they are set by color attribute (B, G, P, R, T, W, Y).

LOKUP Look up an array for data

OP F1 OC F2

OP LOKUP must be entered
F1 Name of the array which has to be looked up
OC Operator
F2 search argument

Examples:

LOKUP FG(I) = FIELD
LOKUP FG(I) <= FIELD
LOKUP FG(I) GE FIELD

Purpose:

Look up an array for a certain content.

Description:

LOKUP searches arrays for a certain content. The indicated array is compared element by element with the
search argument. The operation LOKUP is finished as soon as the condition is fulfilled.

For the operation LOKUP an index must be indicated, which fulfills following function:

1. The comparison begins with the element of the array marked by the index.

2. After the termination of the LOKUP operation, the index of the element which has filled the condition of
the comparison is in the index field, or it is 0 (zero), if the condition was not fulfilled by any element of the
array.

Example:
The 5-element array FG3 has the following contents :
'CPG' 'HL1' 'QPG' 'QSF' 'QTF'

the instruction: LOKUP FG3(I) = 'QPG'

has the following effects:

E.g. if I=1 before the LOKUP, then 'QPG' will be found; It will be I=3 after the LOKUP.

E.g. if I=4 before the LOKUP, then only the elements 4 and 5 will be compared with the argument 'QPG' and
I=0 is set.

(for alpha fields) if the search argument and the array have different field lengths, then the comparison takes
place in the length of the shorter operand.

CPG2 Programmer’s
Reference Manual

Page 126

MAP QSF Map input transfer

OP F2 (SV)

OP MAP or RECEIVE must be entered
F2 contains the up to 8-characters name of the map
SV services: Blank, Clear and Low

Examples:

MAP KUNDEN;
RECEIVE BRIEF LOW;

Purpose:

Data are to be read from a QSF map.

Description:

This instruction enables to describe all screen fields interactively outside of the program. Application
programs do not define screen inputs and outputs. All literal and variable fields are described externally.

A modification of the display screen mask usually requires no compilation of the application program. All
fields definied in the program may be entered in a map.

The operation MAP reads data from the screen in a pseudo conversational program.This instruction is
usually coded at the beginning of a program.

With the service SV the following options are possible:

Blank deletion of alpha fields of the mask on blank and num.fields on 0.

CLEAR deletion var. attribute fields of the mask on blank.

Low processing lowercase letters. No translation is executed in uppercase letters, if the system
UCTRAN is not set in the Terminal Control Table, or the program is switched off with the operation UCTRN
OFF.

A'$'-sighn will be replaced by the language code(QTF) of the user, with it the program may be used without
a complex programming for the valid languages (at present D=German, E = English).

With MAP, MAP-VAR, MAPD, MAPD-VAR, MAPI and MAPI-VAR the status in the internal field CPGMRC
(map return code, 2 characters alpha) is set:

' ' normal input
'IC' Invalid Charater
'NI' NO input

CPG2 Programmer’s
Reference Manual

Page 127

MAP-VAR QSF Map -instruction variable

OP EG (SV)

OP MAP-VAR must be entered
EG 16-characters field with variable information
SV service: 'LOW' for lowercase letter

Purpose:

The MAP instruction (s.o.) is to be variable programmed. As operand an alpha field defined with 16-Byte is
entered, which contains the map name from place 1-8. Place 12 can contain a 'B' or 'C' for the service 'blank'
or 'CLEAR'(see operation MAP). All other characters are reserved for MAPO.

The status is set in the field CPGMRC (see MAP operation).

MAPD QSF Map Dialog

OP F2 (SV)

OP MAPD must be entered
F2 contains the up to 8-digit name to the map
SV service: LOW, CLEAR, I

Examples:

MAPD KUNDEN;
MAPD NUMMER LOW

Purpose:

A QSF map is to be output, afterwards data are to be read from this map in the dialog.

Description:

This instruction enables to describe all screen fields interactively outside of the program (see to operation
MAP).

If SV contains the keyword 'LOW', then no translation is executed in uppercase letters at the QSF.

The keywords 'CLEAR' or 'I' enable the query to the key CLEAR (delete key). Otherwise this taste causes
the termination of the program. Hardware-caused with the delete key the display is always deleted.

Service 'S' for the combination of CLEAR and LOW.

A $ - Character in the map name is replaced by the language code.

The status is set in the field CPGMRC (see MAP operation).

CPG2 Programmer’s
Reference Manual

Page 128

MAPD-VAR QSF Map variable dialog

OP EG (SV)

OP MAPD-VAR must be entered
EG 16-characters field with variable information
SV services: LOW, CLEAR, I

Purpose:

The MAPD-instruction (s.o) shall be variable programmed. The 16-Byte long EG-field has the following
construction:

1 - 8 Mapname
9 - 9 Erase Y=Yes N=No
10 - 10 Write Control Character:
 H = BEEP
 K = MDT + LOCK
 L = LOCK
 M = MDT
 N = BEEP + MDT + LOCK
 O = BEEP + LOCK
 S = BEEP + MDT
11 - 11 F = fields only
12 - 16 reserves

The status will be put into the field CPGMRC (see MAP operation).

MAPI QSF Map Input

OP F2 (SV)

OP MAPI must be entered
F2 contains the up to 8-characters name of the map
SV service: LOW, CLEAR, I and S

Examples:

MAPI ARTIKEL
MAPI BRIEF LOW.
--

Purpose:

Data are to be read in the dialog from a map.

Description:

This instruction enables to describe all screen fields interactively outside of the program (see operation
MAP).

If SV contains the keyword 'LOW', then no translation is executed in uppercase letters at the QSF.

CPG2 Programmer’s
Reference Manual

Page 129

The keywords 'CLEAR' or the Í' enable the query of the key CLEAR (delete key). Otherwise this key causes
the termination of the program. Hardware-caused the display is always deleted with the delet key.

Service 'S' is for the combination of CLEARS and LOW.

A $ - Character in the map name is replaced by the language code.

The status is set in the field CPGMRC (see MAP operation)

MAPI-VAR QSF Map Variable Input instruction

OP EG (SV)

OP MAPI-VAR must be entered
EG 16-characters field with variable information
SV services: LOW, CLEar, I and S

Purpose:

The MAPI instruction (s.o) is to be variable programmed. For the construction of the 16-characters alpha
field see MAPD-VAR.

The status is set in the field CPGMRC (see MAP operation).

MAPO QSF Map Output

OP F2

OP MAPO or SEND must be entered
F2 contains the up to 8-characters name of the map

Examples:

MAPO MENUE;
SEND FEHLER;

Purpose:

A QSF map is to be output.

Description:

The operation MAPO outputs a separately created QSF map. This instruction can be given several times in
the program.

In F2 the name is entered into the map, which is to be output on the display.

A $ - character in the map name is replaced by the language code.

CPG2 Programmer’s
Reference Manual

Page 130

MAPO-VAR QSF Map Output variable

OP EG

OP MAPO-VAR must be entered
EG 16-characters field with variable information

Purpose:

The MAPO instruction (s.o) shall be variable programmed. For the setting up of the 16-characters alpha
field, see MAPD-VAR.

MAPP QSF Map Output on a printer

F1 OP F2 (SV)

F1 name of the online printer (as field or as literal)
OP MAPP must be entered
F2 contains the up to 8-characters name of the map
SV AFTer, BEFore, S for feed on the page start

Examples:

DRID MAPP ARTIKEL
'DR15' MAPP POSTEN BEFORE

Purpose:

A QSF map shall be output on an online printer.

Description:

The operation MAPP prints the map entered in F2 on the online printer defined in F1. F1 can be a variable
4-characters alpha field or a literal.

Note:
Only lines are printed, in which at least one character is. If 24 lines are printed, then the map must describe
at least one blank (represented by a '#') in each line.

The following services are supported:

AFT - after the MAPP a feed on the page start is executed. BEF - before the MAPP a feed on the page start
is executed. S - before and after the MAPP a feed on the page start is executed.

MAPP-VAR QSF Map Variable MAPP instruction

F1 OP EG (SV)

F1 online printer as field or as literal
OP MAPP-VAR must be entered
EG 16-characters field with variable informations
SV AFTer, BEFore, S for feed on the page start

CPG2 Programmer’s
Reference Manual

Page 131

Purpose:

The MAPP instruction (s.o) shall be variable programmed. For the construction of the 16-characters alpha
field, see MAPD-VAR.

MOVE Transfer right-adjusted

OP F2 (DY) EG

OP MOVE or MOVE-RIGHT must be entered
F2 field name of the origin field
EG field name of the array
DY dummy word: TO

Examples:

MOVE A B;
MOVE 3.14 TO PI;
MOVE UMS(M) TO UMSATZ
MOVE FG(1) TO FG(I)
MOVE '*' TO STERN;
MOVE X 'FFFFFF' TO ENDTAB; * hexadecimal constant

Purpose:

The contents of a field shall be transferred into another field.

Description:

F2 is transferred from the left to the right after EG. The fields may be defined alphanumerically, numerically
or differently.

MOVE (R) Transfer right-adjusted

(ON) OP F2 (DY) EG (SV)

ON condition query (up to 3 switches)
OP MOVE, MOVER or MOVE-RIGHT must be entered
F2 field name of the origin field
EG field name of the result field
SV service 'C'; 'F', 'I', 'INDex'
DY dummy word 'TO'

Examples:

- MOVE A B;
- ON EF MOVER A TO B;
- ON PF1 MOVE-RIGHT 'X' TO TEST;
- MOVE 3, 14 TO PI;
- MOVE UMS(M) TO UMSATZ;
- MOVE FG(1) TO FG(I);

CPG2 Programmer’s
Reference Manual

Page 132

- MOVE '*' TO STERN;
- MOVE X 'EFEFEF' TO ENDTAB; * hexadecimal literal , up to 3 bytes

Purpose:

The contents of a field shall be transferred into another.

Description:

F2 will be transferred to EG right-adjusted. The fields may be defined alphanumerically, numerically or
differently.

This operation is completely indicatable.

At a MOVE-operation numerically to alpha, the right zone of the alpha-field may be modified.This happens
with an entry in SV. A 'C' or 'F' means that the sign 'C' or 'F' is valid divergent for the standard name.

A 'I' or 'INDex' causes that no test of the used index will be realized. The programmer is responsible that no
storage area will be transferred by mistake.

MOVEA Move array

OP F2 (DY) EG

OP MOVEA or MOVE-ARRAY must be entered
F2 transferring area
DY dummy word TO
EG name of the array

Examples:

MOVEA F256 TO OF FG16
MOVEA FG(IND) LINE24
MOVE-ARRAY FG1 TO FG2

Purpose:

Transfer of alphanumeric characters, whereby either the area which is to be transferred or the result field an
array is, or both arrays are.

Description:

The operation MOVEA transmits alphanumeric characters beginning with the left place from F2 to EG.
Contrary to the operations MOVE and MOVEL field groups are not shifted item wise, but as a coherent area.
The length of the MOVEA operation is determined by the length of the shorter field (F2 or EG).

Examples:

CPG2 Programmer’s
Reference Manual

Page 133

Fields beforehand:
FG25: ' ABCDE ' ' FGHIJ ‘
FG34: ' **** ' ' **** ' ' **** '

MOVEA FG25 TO OF FG34;

FG34 after MOVEA : ' ABCD ' ' EFGH ' ' IJ** '

MOVE-ARRAY FG25(2) TO OF FG34(2);

FG34 after MOVEA : ' **** ' ' FGHI ' ' J*** '

MOVEL Move data left-adjusted

OP F2 (DY) EG

OP MOVEL or MOVE-LEFT must be entered
F2 field name of the origin field
EG field name of the result field
DY dummy word: 'TO'

Examples:

MOVEL A TO B
MOVE-LEFT A TO B
MOVEL 'X' TO TEST;
MOVEL UMS(M) TO UMSATZ;
MOVEL FG(1) TO FG(I);
MOVE-LEFT STERN TO FG;
MOVEL X '0D0C0D' TO ESCAPE. * hexadecimal literal , up to 3 bytes

Purpose:

The contents of a field shall be transferred into another field.

Description:

F2 is transferred from left-adjusted to EG. The fields may be defined alphanumerically, numerically or
differently.

MOVEN transfer alphanumeric into numeric f ield

OP F2 (DY) EG (SV)

OP MOVEN must be entered
F2 field-name of the alphanumeric origin-field
EG field-name of the numerical result-field
DY Dummyword: 'TO'
SV service H for extended field-test

CPG2 Programmer’s
Reference Manual

Page 134

Examples:

MOVEN A N
MOVEN A TO B
MOVEN UMS(M) TO UMSATZ H
MOVEN FGA(1) TO FGN(I)
MOVEN A TO N H

Purpose:
Contents of an alphameric field are to be transferred into a field, using the same algorithm as the screen
input for numeric fields.
Description:

The field in factor 2 is transferred into the result field, in the same way as if the field was read from the
screen into a numeric field. That means that a decimal position adjustment will be made and the positions
with the highest value are cut off in front if necessary. The comma (or point in the 'english' installation)is
detected as separator of the decimal positions.
Minus signs and the character sequence 'CR' in the alpha field cause that the field is interpreted as negative
value. Invalid characters are eliminated from the field and the field is compressed accordingly before the
MOVEN.

Three indicators can be indicated:
First is set, if the alpha field contains invalid indications.
Second is set , if the alpha field contains too many places before or after a comma.
Third is set, if the alpha field is blank.

For QPG only:

In the internal field CPGPRC (Program Return code, 2 positions alpha) the status for the transmission is set:

' ' normal transmission.
'BL' blank: the alpha field is empty.
'IC' Invalid Charater: the alpha field has invalid indications.
'OF' OVERFLOW: the alpha field contains too many paragraphs.

With the service function 'H' an extended examination of invalid characters is achieved.In this case, invalid
characters are detected if blanks or minus signs appear within a sequence of numbers.

Examples: MOVEN ALPHA TO NUM

The numeric field is seven-position defined with 2 decimal positions.

QPG only!

ALPHA NUM intern Status CPGPRC (with H)
'123 ' 123 0012300C ' ' ' '
' 123 ' 123 0012300C ' ' ' '
' 1 2 3 ' 123 0012300C ' ' 'IC'
'-123 ' 123,00- 0012300D ' ' ' '
'12-3 ' 123,00- 0012300D ' ' 'IC'

' 987,65CR ' 987,65- 0098765D ' ' ' '
',1 ' 0,1 0000010C ' ' ' '

'12.345,678' 12345,67 1234567C 'OF' 'OF'
'56,7D ' 56,7 0005670C 'IC' 'IC'

'ELF DM ' 0 0000000F 'IC' 'IC'
' ' 0 0000000F 'BL' 'BL'

'12A4567 ' 24567 2456700C 'OF' 'OF'

CPG2 Programmer’s
Reference Manual

Page 135

MOVEV variable MOVE-Operation

OP F2 (DY) EG (SV)

OP MOVEV must be entered
F2 ten-digit alphameric field
EG ten-digit alphameric field
SV ARRay, LEFt, Numeric, RIGht
DY Dummyword:'TO'

Examples:

MOVEV A B
MOVEV A TO B LEFT
MOVEV F1 TO F2 ARRAY

Purpose:

Contents of the field, whose name is in F2, are to be transferred into the field, whose name is in EG.

Description:

In case of same field length and same field type, alphanumeric fields are transferred left-adjusted and
numeric fields are transferred right-adjusted.

If factor 2 is smaller than the result field, then the transfer from alpha to numeric will be right-adjusted and
from numeric to alpha left-adjusted.

If factor 2 is larger than the result field, then the transfer from alpha to numeric will be left-adjusted and from
numeric to alpha right-adjusted.

The service functions have the following meaning:

Arr for array. MOVEV operates in this case such as MOVEA.
Left for Left. MOVEV operates in this case such as MOVEL.
Num for numeric transfer.
Right for right. MOVEV operates in this case such as MOVE

MOVEV is not indicatable in the entries, but can be processed indicatedly as follows:

Example:

MOVE X TO A
MOVEL 'FG ' TO A
 MOVEL 'RESULT‘ TO B
 MOVEV A TO B RIGHT

After these operations, array element number X of the array FG is transferred into the field RESULT.The
transfer is right-adjusted.

So that this indicated processing form is possible, the two entries must be always 10 places large alpha
fields. In the first six places of these fields the field name is always located. In the case of indicated
processing thus the name of the array is in the places 1 to 6 but the value of the index field in the places 7 to
10.

Service function numeric

CPG2 Programmer’s
Reference Manual

Page 136

This service is not supported for arrays or array items.

1.From alpha to numerical: Transfer as with MOVEN.

Example: Alpha (15) ' Num. (9,3)
field: ' 123.999999 ' 000123999C
field: ' 123,999999- ' 000123999D
field: ' 1234567.999999 ' 234567999C
field: ' -1234567.999999' 234567999D

2.From numerical to alpha.
- the transfer takes place right-adjusted.
- the receiving alpha field must be large enough.
- the value is edited with the edit code J.
- the alpha field should be initialized with blanks.

Example: Num. (9,3) alpha (15)
field: 000123999C ' 123.999 '
field: 000123999D ' 123.999-'
field: 234567999C ' 123,456.999'
field: 234567999D ' 123,456.999-'

With the operation MOVEV if an error is detected, e.g. that the field name is invalid or the index is incorrect,
then no transfer takes place.

MOVE-ARRAY array transfers

identical to MOVEA (s.o.)

MOVE-LEFT left adjusted field transfer

identical to MOVEL (s.o.)

MOVE-REST remainder of a division

identical to MVR (see below)

MOVE-RIGHT right adjusted field transfer

 identical to MOVE (s.o.)

MVR move remainder

OP EG

OP MVR or MOVE-REST must be entered
EG field name of the result field

CPG2 Programmer’s
Reference Manual

Page 137

Examples:

MVR REST
MVR DIVRST

Purpose:

Save a division remainder.

Description:

With the operation MVR (only) immediately after a division the remainder can be transferred into the field
entered in EG.

Example:

QUOT = 50 / 3
MOVE-REST TO REST

After this sequence of instructions the field REST has the content of 2.

OPEN Open file

OP FN (SV)

OP OPEN must be entered
FN name of the file which shall be opened
SV service (input/output mode for VSAM files and (data sets)

Examples:

OPEN CPGWRK;
OPEN KUNDEN;
OPEN FILE Input
OPEN FILE Update
OPEN DATASET Output
OPEN DATASET Reuse

Purpose:

A file is to be opened.

Description:

The file indicated in FN is opened.

For the batch processing of VSAM files, the input output mode can be specified with the service. So can be
explicitly indicated for the OPEN if the file must be opened for Input, Update, Output or Reuse(output). The
mode is preserved for the entire batch processing.

With datasets the service will be transferred as extension of the operation code. E.g. at OPEN input 'OI' is
transferred in the field CPGHIC to a HL1 dataset.With a QPG dataset at OPEN Reuse, 'OR' will be
transferred in the field CPGFRC.

The status after the OPEN will be transferred in the internal field CPGFRC.

CPG2 Programmer’s
Reference Manual

Page 138

After the OPEN, the file return code is set as follows:

' ' file was successfully opened.
'NF' file was not found (in the FCT).
'NO' file could not be opened.

With datasets the return code must be set accordingly by the dataset.

PARAMETER Parameter transfer to the CALL (not for QPG)

Change in relation with the operation CALL

PARM Parameter transfer to the CALL (not for QPG)

OP F2

OP PARM or PARAMETER must be entered
F2 field name of the parameter

Examples:

- CALL 'PROGRAMM'
- PARM DATEI
- PARM SATZ

Purpose:

A parameter list shall be build up for the CALL-instruction. The parameter list corresponds to the
conventions of CALL-interfaces.

The instruction is only sensefull after a CALL-instruction. As many as you like PARM-instructions may be
coded, one for every parameter.

Between CALL and PARM no other statement may be coded.

PERFORM Execute a subroutine (not for QPG)

identical to EXSR (s.o.)

PROG(RAM) call QPG program

OP F2 (EG)

OP PROG or PROGRAM must be entered
F2 program name
EG Library

CPG2 Programmer’s
Reference Manual

Page 139

Example:

PROGRAM OTTO
PROG HUGO TASK

Purpose:

A QPG program is to be called as external subroutine.

Description:

The QPG program indicated in F2 is executed as external subroutine. Fields are transferred automatically, if
the field names and -lengthes in the calling and called program correspond (see chapter 3100, data
exchange).

In EG the library is indicated, if the subroutine is in another library than the calling program.

Note: In CPG2 programs the instruction PROGRAM is to be used.

PROG-VAR call QPG program variable

OP EG

OP PROG-VAR must be entered
EG 32-Byte long alpha field

Example:

PROG-VAR HUGO

Purpose:

A QPG program is to be called as external subroutine.

Description:

The 32-Byte long parameter field EG has the following structure:
Agency:

1 - 8 program name
9 - 12 library (necessary only if the called program is in other library)
13 - 32 reserved

PROT(ECTION) protection code has to be given out (see manual CPG3)

OP F2

OP PROT or PROTECTION must be entered
F2 field that contains the protection code

CPG2 Programmer’s
Reference Manual

Page 140

Example:

PROT A
PROTECTION FELD
--

Purpose:

A program is to be protected in connection with CPG3..Sign On against unauthorized access.

Description:

PROT is executed according to CPG3 Sign -On. A 12-digit alpha field is needed, which is structured as
follows:

Place

1- 8 Symbolic name of the protection code
9- 9 Type of the error handling

' ' - by CPG3-Serviceprograms
'R' - own programming after call of the Return Code

10- 10 Return code
'0' - access is allowed
'1' - None Terminal-Task, PROT not authorized
'2' - user is not signed on
'4' – program not in the Protection- Table
'7' - errors within the area 'Clients'
'8' - errors within the area of 'Access Areas'

11- 12 Reserved

PURGE Delete temporary storage queue

OP F2

OP PURGE must be entered
F2 name of the Temporary Storage Queue which shall be deleted

Example:

PURGE STOR

Purpose:

A Temporary Storage queue is to be deleted.

RANDOM Reset file to random processing

identical to RNDOM (see below)

READ read a file sequentially

(F1) OP FN (SV)

CPG2 Programmer’s
Reference Manual

Page 141

OP READ must be entered

F1 field name of the key
FN file name
SV S for save at TS

Examples:

READ CPGWRK
KDNR READ KUNDEN;
READ STORAGE S
1 READ TPTC
READ HQTFC

Purpose:

A record of a file is to be read sequentially.

Description:

VSAM (KSDS/RRDS/ESDS)

Records of a VSAM file are sequentially read.

In F1 the field name of the key can be indicated.During the first execution it is possible that the key field
contains the key of the record, with which the sequential processing begins.

FN contains the name of the file. The key can be generically indicated. If the entered key is missing in the
file, the record with the next higher key is read.

With end of file the status 'EF' is set in the field CPGFRC. With VSAM files 'EF' must be queried after the
READ operation because after another READ after EF the program would abord with a system error
message.

STORAGE

F1 can remain free or contain a numeric code. Normally the area is released after reading. A 'S' or 'SAVe' in
SV causes at simulated TS queues that the area is preserved after reading.

HL1 and QPG datasets

F1 must remain free.

READ-BACK Read file backwards

READB Read file backwards

(F1) OP FN

F1 field name of the key can be entered
OP READB or READ-BACK must be entered
FN file name

Examples:

CPG2 Programmer’s
Reference Manual

Page 142

KEY READB DATEI;
READ-BACK KUNDEN
READB HQTFC

Purpose:

A record or several records(e.g. a VSAM file)is to be readed. The file is processed sequentially backwards.

Description:

The operation READB for VSAM files operates like READ, however the records are read backwards. That
means that the logically next record is the one with the next lower key.

At the start of file the status 'EF' is set in the internal field CPGFRC.

Differently to the READ the first record read with READB must be available in the file. If the record which
should be read is missing, then 'EF'is set.

READB-PAGE Read file backwards

(F1) OP F2

F1 field name of the key may be declared
OP READB or READ-BACK must be entered
F2 file name

Examples:

- KEY READB DATEI;
- READ-BACK KUNDEN

Purpose:

A record or several records of a VSAM-file shall be readed. The file will be processed sequentially
backwards.

Description:

The operation READB for VSAM-files works like READ, however the records are to read backwards. That
means that the logical next record is that with the next smaller key. At the file-start the switch EF will be set
and the internal field CPGFRC will be filled with 'EF'.

Differently to the READ the first record read with READB must exist in the file. If the record to be read does
not exist, 'EF' will be set and no input is processed.

READI Read Segment of an input file

OP FN EG

OP READI must be entered
FN name of the file, from which a segment is read

CPG2 Programmer’s
Reference Manual

Page 143

EG name of the segment, that is described in the input

Example:

READI AUFTRAG POSITION
READI AUFTRAG TEXTE

Purpose:

From a file already read a certain structure is to be transferred again into the program.

Description:

Transfer of segments. In particular with VSAM files with different record types it is of advantage possibly to
read first a part of the data record. According to contents of the read data one decides then, into which
structure the input record will be transferred.

One achieves this additional transfer of input data already read with the instruction READI. According to the
input regulations for a segment the input data of the lastly read record will be transferred again.

Note: READI is always used after READ- or READ-BACK operation or after a CHAIN instruction (whereby
in the CICS in addition the service 'U' or 'P' is necessary). If this regulation is not followed, then the program
abords during the CICS-execution.

If READI is used under the CICS after CHAIN-U or CHAIN-P, without an update being made, then the file
has to be released after the(last) READI operation with RNDOM.

READP Read records of a disc-file into a p age

(F1) OP F2 EG

F1 name of the key-field may be declared
OP READP or READ-PAGE must be entered
F2 name of a disk-file
EG name of an array, into which is read.

Example:

- KEY READP POSTEN PAGE
- READ-PAGE ARTSTA S01

Purpose:

Records of a file shall be read into an array.

Description:

The operation READP works like READ. The key field in F1 declares, at which position of the file the
processing begins. If the key is not available, the next higher one will be read.

From the file indicated in F2 may be read as much records as the array indicated in EG has elements.

Prerequisite is that in the output-division is described how array-elements shall be edited.

CPG2 Programmer’s
Reference Manual

Page 144

Before reading the array is deleted.

RECEIVE transaction-oriented Read of a QSF m ap

identical to MAP (s.o.)

REPLACE replace a character by another

REPLC Replace a character by another

(F1) OP F2 EG

F1 Character which is to be replaced
OP REPLC or REPLACE must be entered
F2 character which is set as literal or as variable
EG alpha field / - array / -array element

Examples:

REPLACE '0' WERT; * replace blanks by zeros
REPLC X'00' F10; * replace blanks by X'00'
REPLC F2 EG; * replace blank by content of F 2
'x' REPLC '*' EG; * replace 'x' by '*' in EG

Purpose:

Any character in a field shall be exchanged with another. In the case of default blank is replaced.

Description:

F1 contains the character, which is to be replaced, as alphanumeric or hexadecimal literal or as variable in a
one-place alpha field. If F1 is not indicated, then blank (X'40') is replaced.
F2 contains the character, which is to be inserted instead, as alpha numeric or hexadecimal literal or as
variable in a oneplace alpha field.

In EG is the name of the field which shall be changed.

RIGHT Shift alpha field right-adjusted, blanks in front

identical to JRB (s.o.)

RIGHT-CHAR Shift alpha field right-adjusted, c haracter in front

identical to JRC (s.o.)

RIGHT-ZERO Shift alpha field right-adjusted, ze ros in front

CPG2 Programmer’s
Reference Manual

Page 145

identical to JRZ (s.o.)

RNDOM Reset file to random processing

OP FN

OP RNDOM or RANDOM must be entered
FN file name

Examples:

RNDOM KUNDEN
RNDOM ARTIKEL

Purpose:

A file, which was sequentially processed, may be 'switched' to direct access.

A record closed with CHAIN UPDate is to be unlocked again, if no update took place.

FIND tables are reset to the first element of the table. The next search with FIND starts at the first table
element.

ROLL Roll array contents up one element

OP EG

OP ROLL must be entered
EG name of a array (possibly with index)

Example:

ROLL PAGE
ROLL PAGE(I)

Purpose:

Shift forward of array elements

Description:

With ROLL within an array all elements are shifted on the next Lower index. The first element of the array is
lost thus; the last element remains unchanged. If an index is indicated for the array, the shift starts at this
element.

CPG2 Programmer’s
Reference Manual

Page 146

Example: Contents of the array FG

Before ROLL after ROLL FG
FG, 1 'AAA' 'BBB'
FG, 2 'BBB' 'CCC'
FG, 3 'CCC' 'CCC'

ROLLB Shift an array backwards

ROLL-BACK Shift an array backwards

OP EG

OP ROLLB or ROLL-BACK must be entered
EG name of a array (possibly with index)

Examples:

ROLLB PAGE
ROLL-BACK FG
ROLL-BACK FG(I)

Purpose:

Shift from items of a array rearwards

Description:

With ROLLB within an array all elements are shifted on the next higher index. The last element of the array
is lost thus; the first element remains unchanged.If an index is indicated for the array, then the shift starts at
this element.

Example: Contents of the array FG

Beforehand after ROLLB FG
FG,1 'AAA' 'AAA'
FG,2 'BBB' 'AAA'
FG,3 'CCC' 'BBB'

SAVET Save screen contents

SAVET-VAR Save screen contents variable

OP F2

OP SAVET or SAVET-VAR must be entered
F2 four places name of a temporary storage queue

CPG2 Programmer’s
Reference Manual

Page 147

Example:

SAVET TS03
SAVET-VAR FELD

Purpose:

The actual screen is saved.

Description:

The operation SAVET saves the actual screen contents onto Temporary Storage.

F2 contains in max. 4 byte the name of a TS queue, in which the displayed screen page is saved (this name
is extended in front internally by the four places terminal id). With SAVET-VAR the Storage name must be
made available in a four place alpha field.

With the operation LOADT the saved picture may be loaded again. This operation is used e.g., in order to
call a help window by a program and to restore the old screen contents afterwards.

Note: Reconstructing the colors is only guaranteed if these are set by color attribute (B,G,P,R,T,W,Y).

SCAN searching for a character sequence in an alpha field

F1 OP F2 EG (SV)

F1 search argument (character sequence)
OP SCAN must be entered
F2 name of the field to be looked up
EG numerical Field for initial value and found position
SV service V for looking up in variable length

Examples:

FELD SCAN FG(I) POS
FG SCAN SATZ INDEX
ARG SCAN FELD INDEX Var
'*' SCAN SATZ X

Purpose:

Searching a character sequence in an alphanumeric field.

Description:

The operation SCAN looks up the field in F2 for contents of the field in F1. If the character sequence is
found, then the position is transferred into the result field.

As result field a numeric field can be indicated with 0 decimal positions. If this field is greater 0 before the
instruction, then the search begins at the appropriate position of the field. After the operation the field
contains the position, at which the character sequence, i.e. the first character of the sequence was found. If
the character sequence is not found, then the result field is set to 0.

The field length of factor 2 must be larger than the field length of factor 1. At arrays in factor 2 it is to be
noted that the element length must be larger than the field length in factor 1.

CPG2 Programmer’s
Reference Manual

Page 148

With the service 'V' may be searched in variable length. The length corresponds to the number of places
which are filled into the search argument. The end of the argument is thereby blank or x'00'. If an argument
is searched which contains e.g. blank characters, then any special character can be used to include the
search argument.(the same special character at the start and at the end). Thereby the special character is
not used as search argument.

SCREENDUMP debugging aid special terminaldump

SDUMP debugging aid special terminaldump

OP (F2)

OP SDUMP, TDUMP or SCREENDUMP have to be entered
F2 dump code with an identifier of up to four places.

Examples:

SDUMP 1
SCREENDUMP

Purpose:

Produce a Special dump on the display

SELCT field selection

SELECT field selection

OP EG

OP SELCT or SELECT must be entered
EG name of the field into which is read

Examples:

SELECT FELD
SELCT CPGCOM
SELCT CPGSIN
SELCT CPGTCT
SELECT FG(X)

Purpose:

In the input division the field is read like a file.

CPG2 Programmer’s
Reference Manual

Page 149

SEND send a QSF-Map to a screen

identical to MAPO (s. o.)

SET-LIMIT set pointer to a record of a file

SETLL set pointer to a record of a file

F1 OP FN

F1 field name of the key, with which is positioned
OP SETLL or SET-LIMIT must be entered
FN file name

Examples:

KEY SETLL CPGWRK
KDNRA SET-LIMIT CPGKDN
QNR SETLL STOR

Purpose:

Onto a file is to be positioned.

Description:

With this operation the sequence of a sequential READ can be interrupted and be taken up at any place in
the file again with sequential processing.

The SETLL operation does not read data, but determines by the contents of the key field indicated in F1 the
record which is to be read with the next READ operation. FN contains the name of the file. The key in F1
does not have to be available on the file. Thus it is possible to position with a partial key. In such a case it is
positioned at the next higher key.

If 'End of File' is reached at the execution of a SETLL operation, then the internal field CPGFRC is filled with
'EF'.

SORT(A) Sort an array

OP F2 (SV)

OP SORTA or SORT must be entered
F2 name of an array
SV 'Blanks', ' Descending'

CPG2 Programmer’s
Reference Manual

Page 150

Examples:

SORT FG1
SORTA PAGE BLANKS
SORTA FG2 DESCEND

Purpose:

An array is to be sorted.

Description:

The operation SORTA sorts the array indicated in F2 ascending by.

The service function 'blank' causes that additionally to the ascending assortment, the array elements, whose
contents are blank (or zero at numeric arrays) are sorted to the rear.

The service function 'D' causes that the array is sorted in descending sequence.

Examples:

SORTA FG
SORTA FG DOWN
SORTA FG BLA

Beforehand after SORTA after SORTA D after SORTA B

FG(1) ' 2 ' ' ' ' 2 ' ' A '
FG(2) ' A ' ' A ' ' 1 ' ' B '
FG(3 ' ' ' B ' ' B ' ' 1 '
FG(4) ' B ' ' 1 ' ' A ' ' 2 '
FG(5) ' 1 ' ' 2 ' ' ' ' '

SQRT calculate square root

SQUARE-ROOT calculate square root

OP F2 EG (SV)

OP SQRT or SQARE-ROOT must be entered
F2 name of a numeric field
EG name of a numeric field (for the result)
SV 'H' or 'ROUnded' for rounding

Examples:

SQRT NUMBER OF ROOT
SQARE ROOT F30 ROUND

Purpose:

The square root of a number is to be calculated.

CPG2 Programmer’s
Reference Manual

Page 151

SQRT can also be used for arrays and array elements.

SYNCP (OINT) Define a synchronization point (not f or QPG)

OP (SV)

OP SYNCP or SYNCPOINT must be entered
SV 'ROL' for syncpoint Roll-Back

Example:

- SYNCPOINT

Purpose:

Define a synchronization point.

Description:

At the system recovery of the TP-control program, the operation SYNCP indicates up to which point the
process was locked. All file-modifications (Update, addition, eliminate), occured after a SYNCP will be
declined per Dynamic Transaction Backout after an abnormal program -/Task-end.

Prerequisite for the function of the operation SYNCP is, that a LOG-File is positioned for the TP-Monitor and
that the FCT and the PCT will get corresponding entries:

Example:

FCT: JID=System, LOG=YES for all Update-files used in the program
PCT: DTB=YES for all programs containing SYNCP

With the service-function ROLlback, SYNCP-order given wrongly, may be lifted again.

Before the operation SYNCP all used files in the program must be released with RNDOM*ALL.

CPG2 Programmer’s
Reference Manual

Page 152

TAG Define a label

F1 (OP)

OP TAG may be entered
F1 label (label in the program)

Examples:

- START TAG
- END-OF-INFOICE

Purpose:

A program-position should get a name.

Description:

This operation sets a label, to which may be branched with help of a GOTO-Operation. The name of the
label stands in F1.

The name of the label must not correspond with a field-name which is already used.

Exeptionally the operation-code (TAG) is not applicable for this operation. A single name in the Procedure-
Division is always interpreted as a TAG.

TEST-FIELD check field for numeric characters

TESTF check field for numeric characters

OP F2 EG (SV)

OP TESTF or TEST-FIELD must be entered
F2 alphanumeric field to be checked
EG one-place alpha field for the result of TESTF
SV L, in order to check also the last byte (normal case)

Examples:

TESTF FELD STATUS LAST

Purpose:

An alphanumeric field has to be examinated for numeric contents.

Description:

The alphanumeric field in F2 is checked for numeric contents. The result of the operation is stored in EG:

CPG2 Programmer’s
Reference Manual

Page 153

'B' the field contains only blanks (hexadecimal '40')
'M' the field contains only digits and leading blanks
'N' all characters are digits. ' ' will be set in all other cases.

Under normal conditions the service function L is entered, so that also the last byte is checked for digit.

(In special cases, in which numerically processed fields were stored unpacked to files, one operates without
the service L. In these cases the PACK /UNPACK function of the assembler have led to the fact that in the
last byte of the field the zone is located in the first half byte. If a zone is C or D, then here are letters A to I or
J to R, which would be transferred correctly into a value during the pack. Also such fields can be tested with
TESTF: Without service L also the letters A to R in the last place are detected and treated like the
corresponding digits. See table of the EBCDIC code.)

TIME set time

OP (EG)

OP TIME must be entered
EG name of a numeric field

Examples:

TIME
TIME MMSS;

Purpose:

The internal fields UTIME and CPGTIM are updated.

Description:

Into the field entered in EG the numeric field with six digits with zero decimal places CPGTIM will be
transferred right adjusted.

TWA-LOAD Read private TWA from Temporary Stor age

TWALD Read private TWA from Temporary Stor age

OP F2 (SV)

OP TWALD or TWA-LOAD must be entered
F2 name of a Temporary Storage area
SV VARiabel, if Storage Name stands in al field

CPG2 Programmer’s
Reference Manual

Page 154

Example:

TWALD TS23; * Syntax for CPG and QPG
TWA-LOAD NAME VAR

Purpose:

A TWA saved with TWA SAVE on Temporary Storage is read in again.

Description:

In F2 a name for the TS area is indicated, maximum length is 4. The TWA is read only if it fits with the
program, i.e.has the correct length; therefore TWA-LOAD will normally only be executed in the program in
which the operation TWA-SAVE was used.

In the field CPGFRC the status is set whether the TWA was found:

' ' the private TWA was loaded.
'EF' the private TWA was not found.

TWA-SAVE Save private TWA onto Temporary Stor age

TWASV Save TWA onto Temporary Storage

OP F2 (SV)

OP TWASV or TWA-SAVE must be entered
F2 name of a Temporary Storage area
SV VARiabel, if Storage Name stands in a field.

Example:

TWA-SAVE TS23; * Syntax for CPG and QPG
TWASV NAME VAR

Purpose:

A TWA is saved onto Temporary Storage.

Description:

In F2 a name for the TS area is indicated, either as a 4 places alphanumeric string (without quotation notes)
or in a 4 places alphanumeric field, if the service ‘VAR’ is used.

The private TWA stored with TWA-SAVE can be read later with TWA-LOAD again.

CPG2 Programmer’s
Reference Manual

Page 155

TWASV-VAR TWA on temporary storage rescue

identical to TWASV and the service-function VAR

UCTRAN translating into uppercase letters

UCTRN translating into uppercase letters

OP F2 (SV)

OP UCTRN must be entered
F2 entries: ON or OFF
SV service 'T' for translating the CICS-TRANS-Id's

Examples:

UCTRN ON
UCTRN ON T
UCTRN OFF

Purpose:

Switch translation on or off.

Description:

CICS

The entry ON in F2 sets for the screen, at which the program is executed, the terminals parameter UCT
on.In this case the TP monitor translates all inputs of lowercase letters into uppercase letters.

The entry OFF switches the translation off. Thus it is possible to enter also pseudo conversational text inputs
in upper- lower case.

The service 'T' can be used, if only the CICS Trans-Id's are to be translated.

BATCH

UCTRN ON switches the translation for all printouts on.
UCTRN OFF switches the translation off.

CPG2 Programmer’s
Reference Manual

Page 156

UPDAT(E) modify data record in a file

OP F2 for Temporary Storage Queues or HL1/QPG datasets

OP UPDAT or UPDATE must be entered
F2 name of the file

F1 OP F2 EG for disk files

F1 Name of the key files
OP UPDAT OR UPDATE must be entered
F2 Name of the disk file
EG Field, that has been read in via Input Division

Example:

UPDATE TSQ1
KEY UPDAT CPGWRK REC86

Purpose:

Modify a record on a file without using the Output Division.

Rules:

- For storage and Dataset, the structure defined in the Input Division may only contain alphanumerical

and packted numerical fields.
- For disk files, the oparation is rstricted to 256 bytes. The field in EG has to be a field that is described as

input in the input division.

WAIT waiting

OP (F2)

OP WAIT must be entered
F2 numeric field for the duration of waiting

Examples:

WAIT * wait 1 second
WAIT 5; * wait 5 seconds
WAIT SS; * wait SS seconds

Purpose:

Waiting for the timer.

Description:

CPG2 Programmer’s
Reference Manual

Page 157

With WAIT a timer is started, which runs after the number of seconds indicated in F2. If F2 is not indicated,
then the TIMER is set to 1 second. The execution of the program is suspended up to the outflow of the
timer.

WAIT enables to insert a tracing in time-consuming program flows to offer to CICS the possibility to serve
other transactions. SO an abort with AICA of such quasi applications of batches in the CICS can be avoided.

WHEN indication of a condition

WHEN-DAT(E) date query standard format TTMMJJ in a condition

WHEN-DATI date query ISO format JJMMTT in a co ndition

OP F1 OC F2 (SV)

OP WHEN, WHEN-DAT(E) or WHEN-DATI must be entered
F1 first matching field (indicatable)
OC Operater = > < > = < = >< EQ GT LT GE LE NE
F2 second matching field (indicatable)
SV boolean functions AND/OR can be established.

The WHEN statement indicates an alternative condition within a EVALUATE operation, see also operation
EVALUATE.

WHEN-DAT and WHEN-DATI permit the query of date values in the standard (- DAT) or in the ISO format (-
DATI). With AND/OR date queries can be combined with each other and with 'normal' WHEN queries.(See
IF-DAT/IF DATI for further description).

WHEN OTHER indication of a condition

WHEN OTHER

The WHEN OTHER statement indicates the statements, which are executed within a EVALUATE operation,
if all preceding WHEN-conditions were not fulfilled.

WRITE add data record to a file

OP F2 for Temporary Storage Queues or HL1/QPG datasets

OP WRITE must be entered
F2 name of the file

CPG2 Programmer’s
Reference Manual

Page 158

F1 OP F2 EG for disk files

F1 Name of the key files
OP WRITE must be entered
F2 Name of the disk file
EG Field, that has been read in via Input Division

Example:

WRITE TSQ1
KEY WRITE CPGWRK REC86

Purpose:

Add a record on a file without using the Output Division.

Rules:

- For storage and Dataset, the structure defined in the Input Division may only contain alphanumerical

and packted numerical fields.
- For disk files, the oparation is rstricted to 256 bytes. The field in EG has to be a field that is described as

input in the input division.

XFOOT calculate the sum of an array

OP F2 EG (SV)

OP XFOOT must be entered
F2 name of a numeric array
EG name of the total field
SV 'H' or 'ROUnded' for rounds

Examples:

XFOOT FGN SUMME
XFOOT FGN FELD ROUND

Purpose:

Count the total of the elements of a numeric array.

Description:

After execution of the operation the total of the elements of the numeric array indicated in F2 is indicated in
EG. With the service function can be determined whether the result is rounded or not.

CPG2 Programmer’s
Reference Manual

Page 159

Table of operation codes

Opcode Coding Comment

= EG = F2
+ EG = F1 OP F2
- EG = F1 OP F2
* EG = F1 OP F2
/ EG = F1 OP F2
ACCEPT F1 ACCEPT FN SV = Check,Prot,Upd RC = CPGFRC
AFOOT AFOOT FG EG (SV) SV = ROUnded
AVERAGE OP
BREAK OP (SV) SV = All
BEGSR F1 OP
CALL OP F2 (EG)
CHAIN F1 CHAIN FN SV = Check,Prot,Upd RC = CPGFRC
CHANG F1 CHANG F2
CHANGE F1 CHANGE F2
CHECK OP FN RC = CPGFRC
CHECK-VAR OP FN RC = CPGFRC
CLEAR OP
CLOSE OP FN RC = CPGFRC
COM-REG OP F2
COMRG OP EG
COMPUTE OP Formule
CONT OP
CONTINUE OP
CONVERT OP F2 (DY) (EG) (SV) DY = INTO SV see CONVT
CONVT OP F2 (DY) (EG) (SV) SV = Char Date Hex Low Sec Time X Year
DEBUG OP (F2) F2 = ON or OFF
DELC OP F2 EG (SV) SV = Array
DELET OP (F1) OP F2
DEQ(UEUE) F1 OP (SV)
DISPLAY F1 OP (F1) OP EG
DO OP (DY) (F1) (F2 DY) (DY EG) DY = LOOP FROM TIMES WITH
DO UNTIL OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
DO UNTIL-DATe OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
DO UNTIL-DATI OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
DO WHILE OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
DO WHILE-DATe OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE *
DO WHILE-DATI OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
DSPLY F1 OP oder (F1) OP EG
EDIT OP EG
ELIM OP F2 EG
ELIMINATE OP F2 (DY) EG
ELSE OP
END OP (F2)
END-EVALUATE OP
ENDDO OP (F2)
ENDEV OP
ENDIF OP
ENDPR OP
ENDSR (F1) OP
ENQ(UEUE) OP F1 (SV)
EVALUATE OP
EXCPT OP FN
EXHM OP F2 (EG) (SV) EG = Data channel, SV = I,T
EXHM-VAR (ON) OP F2
EXIT-TRANS OP F2
EXITD OP EG (SV) SV = T
EXITI OP F2

CPG2 Programmer’s
Reference Manual

Page 160

Opcode Coding Comment
EXITP OP F2 (SV)
EXITP-VAR OP EG (SV)
EXITS (F1) OP F2 EG (SV)
EXITT-VAR OP EG
EXITT OP F2
EXPR (F1) OP F2 (SV)
EXPR-VAR OP EG (SV)
EXSR (ON) OP F2 (BD)
FILL OP F2 (DY) EG DY = INTO
FIND (F1) OP F
GETCHANNEL OP
GETHS OP
GET-UPDATE F1 CHAIN FN
GO (TO) (ON) OP F2 (SV)
IF OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
IF-DATe OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
IF-DATI OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
IF-DATI OP F1 OK F2 (BO)
IF DATK OP F1 OK F2 (BO)
JLB OP EG
JRB OP EG
JRC OP F2 EG
JRZ OP EG
LEFT-SHIFT OP EG
LIST (F1) OP F2 (EG) (SV) SV = I,P
LIST-VAR OP EG (SV) SV = I,P
LOADT OP F2
LOADT-VAR OP F2
LOKUP OP F1 OC F2 OC = > < >= <= >< EQ GT LT GE LE NE
MAP OP F2 (SV) SV = Low
MAP-VAR OP EG (SV) SV = Low
MAPD OP F2 (SV) SV = Low,Clear,I,S
MAPD-VAR OP EG (SV) SV = Low,Clear,I,S
MAPI OP F2 (SV) SV = Low,Clear,I,S
MAPI-VAR OP EG (SV) SV = Low,Clear,I,S
MAPO OP F2
MAPO-VAR OP EG
MAPP F1 OP F2 (SV) SV = Aft,Bef,S
MAPP-VAR F1 OP EG (SV) SV = Aft,Bef,S
MOVE OP F2 (DY) EG DY = INTO TO
MOVE-ARRAY OP F2 (DY) EG DY = INTO TO
MOVE-LEFT OP F2 (DY) EG DY = INTO TO
MOVE (R) (ON) OP F2 (DY) EG (SV)
MOVE-REST OP EG
MOVE-RIGHT OP F2 (DY) EG DY = INTO TO
MOVEA OP F2 (DY) EG DY = INTO TO
MOVEL OP F2 (DY) EG DY = INTO TO
MOVEN OP F2 (DY) EG (SV) DY = INTO TO, SV = A,L,N,R
MOVEV OP F2 (DY) EG DY = INTO TO
MVR OP EG
OPEN OP FN (SV) SV = Inp, Upd, Out
PARAMETER OP F2 (EG)
PARM OP F2
PERFORM (ON) OP F2 (BD)
PROG OP F2 (EG) EG = Library
PROG-VAR OP EG
PROGRAM OP F2 (EG) EG = Library
PROT OP F2
PROTECTION OP F2

CPG2 Programmer’s
Reference Manual

Page 161

Opcode Coding Comment

PURGE OP F2
RANDOM OP FN
READ (F1) OP FN (SV) RC = CPGFRC, SV = S
READ-BACK (F1) OP FN
READB (F1) OP FN RC = CPGFRC
READB-PAGE (F1) OP F2
READI OP FN EG EG = record identification
READP (F2) OP F2 EG
RECEIVE OP F2 (SV) SV = Low
REPLACE OP F2 EG
REPLC OP F2 EG
RIGHT OP EG
RIGHT-CHAR OP F2 EG
RIGHT-ZERO OP EG
RNDOM OP FN
ROLL OP EG
ROLL-BACK OP EG
ROLLB OP EG
SAVET OP F2
SAVET-VAR OP F2
SCAN F1 OP F2 EG (SV)
SCREENDUMP OP (F2)
SDUMP OP (F2)
SELCT OP EG
SELECT OP EG
SEND OP F2
SET-LIMIT F1 OP FN RC = CPGFRC
SETLL F1 OP FN RC = CPGFRC
SORT OP F2 (SV) SV = Bla,Desc
SORTA OP F2 (SV) SV = Bla,Desc
SQL OP Statement continuation lines in column 72 '+'
SQRT OP F2 EG (SV) SV = Round
SQUARE-ROOT OP F2 EG (SV) SV = Round
SYNCP (OINT) OP (SV)
TAG F1 (OP)
TASK OP (F2) (EG) (SV) SV= A, B, I, S, T
TASK-VAR OP EG (SV) SV = A, B, I, S, T
TESTF OP F2 EG (SV) SV = L
TEST-FIELD OP F2 EG (SV) SV = L
TIME OP (EG)
TWALD P (F2)
TWASV OP (F2)
TWASV-VAR OP (F2)
TWA-LOAD OP (F2)
TWA-SAVE OP (F2)
UCTRAN OP F2 (SV) SV = T
UCTRN OP F2 F2 = ON,OFF
UPDAT OP FN RC = CPGFRC
UPDATE OP FN RC = CPGFRC
WAIT OP (F2)
WHEN OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
WHEN-DATe OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
WHEN-DATI OP F1 OC F2 (SV) OC = > < >= <= >< EQ GT LT GE LE NE
WHEN OTHER OP
WRITE OP FN RC = CPGFRC
XFOOT OP F2 (DY) EG (SV) DY = TO, SV = Round

OP = Operation OC = Query SV = Service () for choice F1 = Factor 1 2 = Factor 2
EG = Result DY = Dummyword FN = Filename RC = Return code

CPG2 Programmer’s
Reference Manual

Page 162

H L 1 5000

HL1 programming 5010

HL1 programs are written in the programming language CPG. HL1 is an expansion of the CPG, that is
disposable up from the service level CPG3.

The HL1 compiler is necessary for the generation of HL1 programs, and is executed with EXEC HL1. This
compiler includes CPG and can also generate 'normal' CPG programs via an entry in the OPTIONS. The
necessary entry is MAIn or ROOt for main program or root phase. These two entries are identical in their
function. (So: HL1 main program = CPG program)

HL1 program modules can be called from every CPG program and from every HL1 module with the
operation 'EXECUTE HL1 Module'

EXHM NAME

So factor 2 contains the name of the HL1 module which should be processed.

HL1 modules are object compatible, that means, that they can be processed without any alteration and
without new compilation under every TP monitor for which a CPG interface is available. Phase names for
HL1 programs are up to 6 positions long and freely selectable.

The phase names for HL1 modules will be extended by the compiler on the left by the literal 'HM', that
means, the program XZEIL1 will be cataloged as HMXZEIL1. So all HL1 modules are found under 'HM' in
the Core Image Library, so that a differentiation from all other programs is given.

HL1 modules can not be processed independently.

The call only takes place from a main program or another HL1 module with help of the operation EXHM.
Main programs are also produced by HL1 (OPTIONS MAIn or ROOt).

HL1 programs are written reentrant, by the generated assembler source program contains only pure
assembler instructions and is free from all input/output macro instructions and free from data fields.

All macro instructions are controled in a central interface, that offers if necessary a fast adaptation possibility
in case of a change of the basis software, so that a high degree of flexibility is given to the applications.

The data channel 5020

The data fields of a CPG program are positioned in the Transaction Work Area (TWA), which is disposed
separately for each terminal during the online processing.

Each HL1 module has additionally an own Transaction Work Area (PWA Private Work Area).

HL1 modules are independent of each other and can exchange data among each other.

The programmer can transfer a data channel into the private TWA of this module when calling a HL1
module. The name of this data channel is indicated behind the module name:

CPG2 Programmer’s
Reference Manual

Page 163

EXHM MODUL KANAL1

In this case, the data channel will be described in the input descriptions of the calling program:

 I
 FILE KANAL1 HS DD
 1 6 CUSTNO
 7 24 NAME
 P 25 26 0 NUMBER

Numerical data fields are always packed in the channel!

The data channel in the called program must be described in the first positions of the data division. So the
use of the data dictionary is recommended.

The fields CUSTNO, NAME and NUMBER are transferred into the private TWA of the module MODUL with
the exit to the program (EXHM). After the execution of the module MODUL, the eventually changed field
contents will be retransferred.

The entry HS in the input record description causes, that no optimization is processed for the input fields.

Data description 5030

The data is described in the called module at the beginning of the data division.

-D
 DEFINE KANAL1

In the data channel, numerical fields are always packed!

The data channel should not contain any empty spaces, because in the channel, the data is transferred on
the base of the position, not on the base of the field name!

HL1 Processing 5050

HL1 modules can be called from every CPG online program and from every HL1 Batch program.

HL1 modules are no independently processable programs. They are comparable with subroutines, because
they can only be executed under control of a higher program. The difference to conventional subroutines is,
that they are not connected with the calling program, but are loaded to the program according to the need at
processing time.

So HL1 modules do not lie (like subroutines) several times in the library for processable programs as
components of many programs, but only once in each case.

HL1 programs need much less place in the library than conventional programs.

For the online processing, HL1 modules will be loaded alternatively under control of the TP monitor or into a
program pool of the HL1 Central

CPG2 Programmer’s
Reference Manual

Page 164

Routine Library. The program pool is initialized automatically with the first call of a HL1 module. All further
modules will be loaded into the Central Routine Library in each case at the first call.

The Central Routine Library is a central library for processable subroutines, which can be queried by all
programs running in the TP partition.

HL1 modules do not have to be entered into the program tables of the TP monitor, however, an entry in a
HL1 table is necessary. With this entry, only the name of the module is meant. All necessary parameters for
normal program tables are determined by HL1 it self.

VSE users can let manage their HL1 modules by CICS. Thereby decisive advantages emerge during the
test phase, but only if the modules are relatively big. CICS tries to use this place again with a newcopy, if the
HL1 module has not been changed above a 2K boundary. So the HL1 call and the processing of a module
are not influenced.

Peculiarities for the file processing with HL1 5060

In principle there is no difference to the file processing in the CPG for the file processing within the HL1 main
program and within the HL1 modules. There are two types of modules: Standard modules and dataset
modules (OPTIONS DAT or PWA).

Standard modules should only be used, if they can work without file accesses. Standard modules set the
used working area (PWA) free after each call.

Dataset modules are always used, if files or data bases are to be processed. For such modules, the PWA
(private Work Area) remains within the calling task, that means that the contents of all user fields are
available (OPTIONS DATaset). At the OPTIONS entry PWA, the user fields are initialized in the PWA, only
the CPG internal fields remain.

For sequential processing with dataset modules, the performance improves online as well as in batch. But it
is to note, that the PWA, that remains in these modules, requires place in the system. This will be noticeable
especially at the dialogue programming. Furthermore, dataset modules use in each case own VSAM strings
for READ or CHAIN(U).

Private HL1 Libraries 5070

HL1 Modules will not be entered into the program tables of the TP interface because they are controled and
administered by the HL1 Central Routine Library. VSE users can nevertheless let administer their HL1
Modules by CICS. Hereby advantages emerge during the test phase or if the modules are especially big.
CICS tries to use this place again with a newcopy, if the HL1 module has not been changed above a 2K
boundary.

However, an entry of these modules into a HL1 program table is necessary. The entry necessitates 4 bytes
per module and will be generated with the HL1 table generator (HL1HTG).

The size of the program table is limited to 4K bytes. So a HL1 program table can not contain more than 1024
entries.

The sequence of the entries is requested for the processing. A later alteration of the sequence would
necessitate the new conversion of all programs, which call modules from this table. It is meaningful, to
estimate the later need already before the installation. If there are expected more than 1000 modules for the
end extension, it is proposed to install private libraries already while the installation for the different
applications. These libraries also offer a higher security for program tests and for the program maintenance,
because possible mistakes rest limited on the own application.

CPG2 Programmer’s
Reference Manual

Page 165

At the installation of private libraries, the program modules are sorted according to their use. If the modules
are clearly application connected, for example cash discount calculation, reading article data and so on,
these modules will be entered into the private library for this application, for example bookkeeping, order
processing etc. If the modules are application neutral, for example program description, screen header and
so on, these modules are entered into the table for the general library that is added to each private library.

Private libraries will be indicated by an one digit suffix. A pattern table for a general library and a private
library with the indicator 'A' is delivered with a CPG3 installation. The described HL1 libraries are laid out for
a general library and at most 23 private libraries.

While using program tables for private libraries, the column 22 of the H card must get an corresponding
entry for a HL1 compilation.

The OPTIONS parameter is HL1 or LIB.

Example:

OPTIONS LIB H

to use modules from the general library and the private library H.

Modules, that are delivered with the CPG3 installation, (for example the standard interfaces to other
Lattwein products) are part of the private library H.

HL1 Datasets 5080

HL1 datasets are a subset of the HL1 modules. In principle, they do not differ from other HL1 modules.

HL1 Datasets are especially suitable for the file independent programming, because they are called with
accustomed file operations (like READ, CHAIN,...) for the file or data base processing without additional
programming.

Following points are to note for HL1 datasets:

• HL1 datasets must work with the dataset logic, that means the parameters DAT or PWA must be set in

the OPTIONS.

• The file definition for a HL1 dataset has 'HL1' or 'HL1DS' as unit (and should be deposed in the data

dictionary).

• The data transfer from the calling to the called modules and back can be processed very simply via the

HL1 data channel. HL1 data channels contain only alphanumerical and packed numerical values. Data
channels should not contain any empty space and should be described in the data dictionary. They are
described in the calling program in the Input, in the called program in the first positions of the data
division.

• The data channel must contain the four digit alpha field CPGHIC (HL1 interface control) that controls the

dataset processing.

• All file operations are supported for the HL1 datasets.

• The programmer, who works with a HL1 dataset, only has to code Input Division and Procedure

Division. Files will be changed with the operations UPDAT, WRITE and DELET.

• The entry of a key field for the file operation is not necessary, because the key must be transferred in

the data channel.

CPG2 Programmer’s
Reference Manual

Page 166

Programming with HL1 Datasets 5090

The following example shows a HL1 main program with the possible file accesses via a HL1 dataset.

OPTIONS ROOT PHASE PROGRAMM;
-F;
 FILE SAMPLE
-D;
 FG 20 * 70
-I;
 FILE SAMPLE HS DD; * Data dictionary g enerates the
 1 14 KEY; * three following statements:
 15 100 SATZ
 101 104 CPGHIC
-C;
 CHAIN SAMPLE
 CHAIN SAMPLE CHECK; * without reading o f data
 CHAIN SAMPLE UPDATE
 CHAIN SAMPLE P; * Check for Update
 CHECK SAMPLE
 CLOSE SAMPLE
 DELETE SAMPLE
 OPEN SAMPLE
 RANDOM SAMPLE
 READ SAMPLE
 READ PAGE SAMPLE FG; * page wise into an array
 READ BACK SAMPLE
 READB BACK SAMPLE FG; * page wise backwar ds into an array
 SETLL SAMPLE
 UPDAT SAMPLE
 WRITE SAMPLE

The file description has as unit HL1.

A data channel is necessary for the transfer of the fields. This corresponds to the input statements for the file
processing. Its name must be equal to the phase name of the HL1 dataset module. The key word HS (for
HL1 structure) is indicated in the input description.

The data channel describes the fields of the datasets. Additionally it must contain the 4-places HL1 interface
control field CPGHIC.

Data channels should be described in the data dictionary!

The File Return code is retransferred in the internal field CPGFRC.

The following example shows a HL1 dataset module for a 1:1 file processing:

- OPTIONS DATASET PHASE SAMPLE;
- FILE CPGWRK;
 - -D;
- DEFINE CPGWRK TYPE DS; * Data channel wil l be generated
 * like follows:
 KEY 14;
 SATZ 86;
 CPGHIC 4;
- ORG CPGHIC; * Redefinition of CPGHIC

CPG2 Programmer’s
Reference Manual

Page 167

- OC 2; * HL1 interface op code
- RC 2; * HL1 interface re turn code
- ORG; * End of the redef inition
- -I;
- FILE CPGWRK DD TYPE DS; * Dictionary gener ates therefrom:
 1 14 KEY;
 15 100 SATZ;
- -C;
- EVALUATE;
- WHEN OC = 'B '; * READ BACK
- KEY READ BACK CPGWRK;
- IF CPGFRC = 'EF'; * End of File
- MOVE 'E' TO RC;
- ENDIF;
- WHEN OC = 'C'; * CLOSE
- CLOSE CPGWRK;
- IF CPGFRC >< ' '; * Not found or not closed
- MOVE 'F' TO RC;
- ENDIF;
- WHEN OC = 'D '; * RANDOM
- RANDOM CPGWRK;
- WHEN OC = 'G'; * CHAIN
- IF OC = 'G '; * CHAIN
- KEY CHAIN CPGWRK;
- ELSE;
- IF OC = 'GU'; * CHAIN for Update
- KEY CHAIN CPGWRK UPDATE;
- ELSE;
- IF OC = 'GC'; * CHAIN Check (wit hout reading)
- KEY CHAIN CPGWRK CHECK;
- ELSE; * CHAIN Check for Update
- KEY CHAIN CPGWRK P;
- END;
- END;
- END;
- IF CPGFRC = 'NF'; * Not found
- MOVE 'G' TO RC;
- END;
- WHEN OC = 'L '; * DELETE (delete)
- EXCPT LOESCHEN;
- WHEN OC = 'N '; * WRITE (new record)
- EXCPT NEU;
- IF CPGFRC >< ' '; * Duplicate record
- MOVE 'D' TO RC;
- END;
- WHEN OC = 'O '; * OPEN
- OPEN CPGWRK;
- IF CPGFRC >< ' '; * Not found or not open
- MOVE 'F' TO RC;
- END;
- WHEN OC = 'R '; * READ
- KEY READ CPGWRK;
- IF CPGFRC = 'EF'; * End of File
- MOVE 'E' TO RC;
- END;
- WHEN OC = 'S '; * SET LOWER LIMIT
- KEY SETLL CPGWRK;
- WHEN OC = 'U '; * UPDATE
- EXCPT AENDERN;
- WHEN OC = 'Z '; * CHECK
- CHECK CPGWRK;
- IF CPGFRC = ' '; * !!! Exeption !!!

CPG2 Programmer’s
Reference Manual

Page 168

- MOVE 'G' TO RC;
- END;
- END EVALUATE; *
- -O;
- FILE CPGWRK DD TYPE DS AENDERN
- FILE CPGWRK DEL LOESCHEN
- FILE CPGWRK DD TYPE DS ADD NEU

Notes for the programming

The example shows a 1:1 dataset, that can contain as much additional statements as necessary.

The whole CPG functions are supported here of course, also the access to any other data base. The
programmer of the application program can work with the usual reading and writing operations also for
another data base.

Data channels should be described in the data dictionary, because they are required twice for the
programming: In the input of the calling program and in the data definition of the called program.

For 1:1 datasets, the dataset structure is often identical with the file structure, but it must contain the field
CPGHIC additionally. In this case at all three positions (data set channel input in the calling program,
channel description in the called module and file input descriptions in the called program) can be worked
with the same data dictionary structure. Thereby CPG generates the CPGHIC field not in the input for the
VSAM file.

4000 bytes can be processed approximately for a logical file access via a dataset.

The first statements of the data division must correspond with the data channel of the calling program. Fields
are allowed to be named differently, the position in the data channel controls the data transfer.

The interface control field CPGHIC must be indicated in the data channel and controls the dataset
processing: The type of the file access will be transmitted via the first two positions of the CPGHIC field to
the dataset module. The 3.position is used internally by CPG.

The 4.position is used for the return code, that is moved (automatically) into the field CPGFRC of the calling
program.

The application of the HL1 interface control field CPGHIC is described in the following table.

CPGHIC byte 1: Operation code: 'B' READB
 'C' CLOSE
 'D' RNDOM
 'E' EXCPT
 'G' CHAIN
 'L' DELET
 'N' WRITE
 'O' OPEN
 'R' READ
 'S' SETLL
 'U' UPDAT
 'Z' CHECK

CPG2 Programmer’s
Reference Manual

Page 169

CPGHIC byte 2: Opcode extension: first letter of the service function:
'C' for CHAIN CHECK
'U' for CHAIN for UPDATE
'P' for CHAIN CHECK for Update

‘I’ open for Input

CPGHIC byte 3: used internally

CPGHIC byte 4: Returncode: is to be set in the HL1 dataset

by the programmer:
Valid values:
'D' Duplicate record
'E' End of file after sequential READ
'F' File error at Open and Close
'G' record not found at CHAIN or CHECK

HL1 Batch Programs 6300

Batch programs can also be produced with HL1.

Therefore only BATch has to be entered into the OPTIONS.

Batch programs are intended for a program size up to 20K and a TWA size up to 8K. With the OPTIONS
parameters BIG and 12K, considerably bigger programs can be written.

The Batch programs work like CPG- and HL1 online programs with a Central Routine Library. The Batch
Central Routine Library is not component of the program but will be loaded to the program at the processing
time.

The data areas CSA, TCA and PIW (interface areas) will also be requested with the program start. So the
HL1 Batch programs become smaller than comparable RPG- or COBOL programs. So the space required in
the Core Image Library will be considerably reduced.

For the moment, the following file types are supported in the Batch:

READER for the card input of SYSIPT.

PRINTER for the print output on SYSLST. In the interface two different DTF's are disposed for the print
output:

a) standard DTFDI (device independant), which allows however only the output up to 120 positions. In this

case, the skip control takes place via the L-card. (FORMS DIVISION)

b) furthermore DTFPR, which allows an output up to 132 positions. This DTF is used, if the file name

begins with 'PRIN'.

As much printers as wished that are distinguished with the SYS number can be indicated.

PUNCHER for the punch output on SYSPCH.

KSDS for VSAM index files with fixed or variable record length.

This statement can also be used for VSAM PATH files, if the access takes place via an alternative index.
Here, the path name has to be entered into the FILES DIVISION, and the key length of the alternative index
has to be indicated.

CPG2 Programmer’s
Reference Manual

Page 170

ESDS for sequential VSAM files with fixed or variable record length.

RRDS for VSAM RRDS files (have always fixed record length)

Disk for sequential disk files. The key length in the file description must remain empty.

TAPE for tape files.

DL1 for data base accesses to DL1.

HL1 for the processing of HL1 datasets.

STORAGE for the processing of Temporary Storage. Single records as well as queues are supported.

TABLE for the processing of tables with CPG operation FIND.

Furthermore CPGTCT can be used as Temporary Storage area for reasons of compatibility to CICS
programs and -modules.

The files are opened automatically with the program start and closed with program end, if 'NO OPEN' is not
indicated in the files division. In this case, the file will be opened and closed per program only with the
instructions 'OPEN' and 'CLOSE'.

For the READER you have to note, that the condition 'end of file' must be tested via the query of CPGFRC.
Reading after end of file would read '/*' or '/&' and lead to a system error.

If a printer is indicated, so the used DTF can be selected with the printer name. Skips to channel will be
controled at DTFDI via L Card, (FORMS DIVISION) and at DTFPR via FCB. If a channel is not defined, then
the program cancels with an I/O error. The overflow switch 'OF' can be used to query the page overflow.

The switch 'OF' is set, if the overflow line was overstepped. The overflow is defined by the size of the list
document (number of lines per page) or by the channel 12 in the FORMS division. If no channel 12 is
indicated, so OF is set, if the form length was overstepped.

It is recommended, that the first print output contains a skip to channel 01, because otherwise the control
with the 'OF' switch can be deficient.

For VSAM files, 'I', 'O' or 'U' will be entered for the in-/output mode in the data dictionary or in the program in
the files division. With 'I' the file is only opened for input, with 'O' and 'U' for output. That is important for
VSAM files with share option 2. Files, that are for example opened in the CICS for output, can afterwards
only be opened in the Batch for input. An opening for output in the Batch would lead here to a VSAM open
error and so to a program abend.

For VSAM files, the option REUSE is supported. Therewith working files can be produced, without a
DELETE/DEFINE being necessary.

The file processing logic is the same in the Batch as for the online Processing.

Different to online processing, records in the Batch can also be updatet or deleted sequentially.

For adding records, note the following:

• Records in KSDS files can be added directly and sequentially in key sequence. For the sequential

adding, the records must be available in rising key sequence. Records can be inserted between existing

CPG2 Programmer’s
Reference Manual

Page 171

data records. If a record with the indicated key already exists, so 'Duplicate Record' is set into the field
CPGFRC and as switch 'DR'.

• Records in ESDS files will be added sequentially at the end of the file. It is not possible to set records

between existing records.

• Records in RRDS files can be added sequentially and directly. For the sequential adding, the records

are added at the end of the file. For the direct adding, records can only be inserted, if no record exists
for the indicated record number, for example if the record has been deleted before. If a record with the
indicated record number already exists, so 'Duplicate Record' is set into the field CPGFRC and as
switch 'DR'.

For the addition, 'ADD' must always be entered into the output. This is also valid for the first loading of files.

Deleting records is only possible in KSDS and RRDS files. The records can be deleted sequentially as well
as directly.

A file must always be opened in the program, in which it is processed, otherwise a system error will be
reported during the execution.

Restrictions and Notes for the Batch Version 6310

In principle all CPG operations are supported in the Batch, exept for:

1. Operations, that are specifically conceived for online processing:

COMRG DEBUG DEQ ENQ EREAD EXITD EXITI EX ITT EXPR
LOADT MAP MAPD MAPI MAPO MAPP PROT RE ADI SAVET
SDUMP SYNCP TESTT TWALD TWASV

1. The operation RNDOM*ALL is not supported.

2. Other operations that are not supported:

2. CALLD CLEAR EXITP IFC VBOMP VSLCT

3. The operation CHAIN with the service UPD or 'P' does not lock the read record for the following CHAIN

operations.

Following switches are not supported:

The screen switches A1-A3 CL DE P1-PC Q1-QC SP and NI

If operations, that are not allowed, are processed in a Batch programm, so the program abends with a
formatted Dump.

Modules for Batch and Online Processing 6325

A module can be used online as well as in the Batch. If a different flow between Batch- and online
processing should be necessary, so this can be controled with the field CPGTID (Terminal Id):

CPG2 Programmer’s
Reference Manual

Page 172

- IF CPGTID = ' '; * Blank in the Batch (X'40')
 :
- ELSE; * Online: Terminal Id or
 : * X'00' for Non Terminal
- ENDIF; * Tasks

Process a HL1 Batch Program 6330

The Batch Job can be constructed as follows:

// JOB HL1BATCH
 ... insert eventually ASSGN, DLBL and EXTENT car ds
// EXEC BATCHPRG,SIZE=AUTO
 ... eventually data cards
/*
/&

Batch programs require the GETVIS area of the partition. Therefore the SIZE parameter must always be
indicated in the EXEC instruction. The partition should be big enough (for example 256K + eventually
necessary storage while using the Temporary Storage).

If errors should appear during a program processing, so this can be caused as follows:

1. Through an error in the application program, for example caused by a data error or through an operation

that is not supported in the Batch. Hereby the program cancels and generates a formatted DUMP.
Mostly, the error has to be searched in the data area (register 12).

2. Through an error in the interface, for example a VSAM error. Hereby a formatted Dump is also printed.

The cause of the abend is printed in clear text at the beginning of the Dump area. VSAM errors and
return codes have to be looked up in the manual 'VSAM messages and codes'. The statement of these
codes is made decimally. A program abend follows after a VSAM error and the following job steps are
not processed.

UPSI switches 6335

At VSE systems, switches may be set with JCL statement // UPSI xxxxxxxx. These switches can be queried
in the program with U1 up to U8.

UPSI switches can be switched on with SETON and switched off with SETOF, this applies only for the
duration of the program processing.

Eventually later running job steps are not concerned therefrom, they must be set eventually by further JCL
statements.

UPSI switches can be set for example to select or exclude certain files from the processing. In this case, the
operations OPEN and CLOSE have to be used.

Example:

- IF CONDITION U1
- OPEN DATEI1
- ENDIF

CPG2 Programmer’s
Reference Manual

Page 173

Error messages during the compilation 6900

The diagnostics work in 2 steps:

1. Error identification in the Source code. The errors are documented b e l o w the faulty statement.

2. Error identification in the generated code. The diagnostic of the CPG1 compiler documents the errors

a b o v e the faulty statement (via the OPTIONS alternatively also b e s i d e the statement); if
possible, a '$' indicates the faulty position.

Several syntax errors can lead to a wrong decision of the compiler that makes a further diagnostic useless.
In these cases, the processing abends and the rest of the program is displayed without commentary. This
cancel of the precompilation only concerns the OPTIONS and the files, data, and input division.

Syntax errors 6910

AND / OR NOT COMPLETE

Cause: An incomplete group of logically linked IF queries was coded. That means, that no IF follows

after AND or OR.

Example:

 - IF A = B AND
 - IF B > C AND; * here is an AND too m uch
 - VA = 'PRR'
 - ENDIF

DO UNTIL / WHILE MIXED

Cause: At a logically linked DO loop, DO UNTIL and DO WHILE were used mixed.

Example:

 - DO WHILE ERRORCODE = ' ' AND
 UNTIL I > MAX

Action: Decision for DO UNTIL or DO WHILE and rewording of the loop condition, in the example:

- DO WHILE ERRORCODE = ' ' AND
- WHILE I <= MAX

END OF SOURCE

Cause: Assigning an alphanumeric literal (with =) to a numerical field.

Assignment an alphanumeric literal (with =), that is longer than eight positions, to an array element.

CPG2 Programmer’s
Reference Manual

Page 174

Half-, full- or duplicate word border for a numerical field.

Action: Check and rectify the faulty statements with help of the syntax rules in this manual.

ENTRY IS INVALID

Cause: A syntactically wrong indicator was indicated for the beginning of a new division.

Examples: For the output division

 '- O;' was coded instead of '- -O;'
 or '- -OUTPUT' instead of '- OUTPUT DIVISION';

Action: Rectify faulty division indicator.

ENTRY IS MISSING

Cause:
Wrong service function or missing 'INTO' at CONVERT-. In the data division, the number of digits is too big,
or '*' has been forgotten at the array definition.

An operation code, for example LIST, expects further entries.

Action: Check and rectify the faulty statements with help of the syntax rules in this manual.

EVALUATE IN EVALUATE.

Cause:
Between an EVALUATE and the affiliated END-EVALUATE must not be coded any further EVALUATE.

FIELDNAME IS INVALID

Cause: at assignment with '=' invalid signs identified:

• assigned numerical literal begins with decimal comma or a decimal point: Not supported
• assigned alpha literal does not begin with ', but with another special character sign, for example ''.
• assignment of a hexadezimal literal with = is not supported.
• for an extended array name, a name of the index field with a length of more than one byte was chosen.
• a blank is set between array and index

The complete support of extended array names is only given, if the Options contain a parameter LONg or if
the column 100 of the standard header card (CPGSTH) contains an A.

FIELDNAME IS UNDEFINED

Cause: The result field of an assignment (with =) is not yet defined in the program code.

Action: The field has to be defined in the data division.

CPG2 Programmer’s
Reference Manual

Page 175

INDICATOR IS INVALID

Cause: An indicator has been coded for a field edition in the record regulation of the output division.

Example: - -O; FIELD SATZ ON 10

Action: Field editions can not be locked or selected with switches. Switches in the field regulations

are allowed. Selecting for a certain edition is possible, if you work with the key word TYPE in
the procedure division and output division.

INVALID CONDITION

Action: Check of the conditioning indicators and rectification. IF CONdition may not be logically

linked with other IF queries.

INVALID LENGTH

Cause: An alphanumeric literal, that contains more than 26 places, was tried to be assigned to an

alphafield with the operation =.

Action: Shorten faulty literals or code a field edition with EDIT via the output division instead of a

direct assignment.

INVALID OPERATION

Cause: An invalid operation code was indicated.

Action: Check the opcode table in this manual and improve the operation code.

NUMERIC ENTRY EXPECTED

Cause: An alphanumerical word has been indicated at a position at which a numerical value is

expected.

Example:

- FIELD 1 10 was indicated instead of
- 1 10 FIELD;
In a field description of the input division

Action: Check and rectify the faulty statements with help of the syntax rules in this manual.

NUMERIC ENTRY TOO BIG

Cause: A field with a length bigger than thousand was defined in the data division.

Action: Rectify the field length (the maximum is 256) with help of the syntax rules in this manual.

CPG2 Programmer’s
Reference Manual

Page 176

OPTIONS NOT CLOSED

Cause: SIMICOLON; FULLSTOP or the key word END are missing as conclusion of the options;

point is indicated, but simicolon is expected.

Action: Set right record end sign.

OUTPUTPOSITION IS INVALID

Cause: With the parameter COLumn in the options, a column smaller than 7 or bigger than 51 was

used.

Action: Check and rectify the options entry with help of this manual.

TOO MANY ENTRIES IN STMNTS

Cause: A statement has more entries, than is supported for the used operation code.

The error also appears, if no record end sign is set between two statements in a line. The error often
appears before commentary statements.

Note: A line numbering at the right edge is eventually recognized as entry, because it will be read

until position 79.

Remedy for this problem:

1. Finish each statement with a simicolon
2. Determine in the standard header card, that the line numbering should not be considered as program

code. In this case, the line numbering will be replaced by blanks for the time of the precompiling. The
entries in CPGSTH: 6 or 8 for six or eight places numbering.

Action: Check and rectify the faulty statements with help of the syntax rules in this manual.

TOO MANY FIELDS

Cause: The precompiler can not generate any more CP names from extended field names.

Action: The system programmer must increase the table CPG*CETBS.

TOO MANY STMNTS. IN LINE

Cause: The compiler finds a word at a position, where no more statement can begin, for example

• for the coding from position 8, a phase name is set up from position 75.
• for the coding from position 1, the coding line may be used up to the column 72.

Action: Check and rectify the faulty statements or entry in the standard header, to ignore always the

last six or eight positions as source code.

CPG2 Programmer’s
Reference Manual

Page 177

Warnings 6920

After a CPG compilation without errors, it is possible, that a warning is printed. Then should be checked on
the base of the below presented explications of the warning code, if the danger exists, that the program
delivers undesirable results.

Warning: Cause

CPG0010 a (E)READ or MAPx instruction with a service function AT, C, K or T has been encoded in a

subroutine.
an EXITP or EXPR instruction with a service function IND or SAVe has been encoded in a
subroutine.

CPG0020 more than 100 list documents or file entries were used in the program. The field optimization

as well as the list reference can not be processed according to the rules.

CPG0030 a dataset has been defined in the files division in a program, but the program works with the

EXPR instruction and the service function IND or SAVe.

If a dataset is also defined in the called program, so the warning can be ignored. However, if
there is no dataset defined, then the saved fields for the dataset are corrupted at return of
the called program.

CPG0040 it was tried to attract a structure from the data dictionary that does not exist.

At warning CPG0040 the compilation will CANCEL.

CPG0050 a field was defined several times. The warning is output, if a file name is used as field name.

CPG0060 an overlay is not completely defined in the data division.

CPG0061 this warning is set, if a field has not been defined.

CPG0070 the generated program is not ready for ESA mode (see chapter 2970).

CPG0080 A CP name was generated from a word, that is identical with an opcode in the first five

positions, for example PURGETPTC.

CPG0090 An OPTIONS parameter without meaning was found.

CPG0100 This warning will appear, if with EXCPT the name in factor 2 begins with ADD or DEL.

CPG0110 This warning will appear, if with a HL1-module with files in the options DAT/PWA is
 missing.

Error Messages in the Assembly 6930

Assembler errors detected during the compilation are usually addressability errors , because they can not
be determined at the CPG compilation. That means, that either the program or the TWA is too big.

The page behind the programmer check list gives information about the faulty program part. (See below).

CPG2 Programmer’s
Reference Manual

Page 178

 EXTERNAL SYMBOL DICT IONARY PAGE 1
SYMBOL TYPE ID ADDR LENGTH LD-ID
PROGN SD (CSECT) 001 000000 005FFF

 DUMMY SECTION DICTION ARY

SYMBOL ID LENGTH

CPGTCADS 1FB 000FFF

For standard programs the length for PROGN (program name) must not be
bigger than X'5FFF' (24K) and CPGTCADS not bigger than X'FFF' (4K).

At programs with 8K TWA (OPTIONS ADD 1 or ADDQ) the program size must not
overstep X'4FFF' (20K) and CPGTCADS must not be bigger than X'1FFF' (8K).

AT OPTIONS BIG or 12K several CSECTS are generated:

SYMBOL TYPE ID ADD LENGTH LD-ID

PROGN SD (CSECT) 001 000000 001FFF
BILD SD (CSECT) 002 000000 002FFF
CPGF002 ER (EXTRN) 003
CPGF002 SD (CSECT) 004 000000 002FFF
SSSELCT SD (CSECT) 005 000000 000FFF
BILD ER (EXTRN) 006
SUBRN SD (CSECT) 007 000000 002FFF
CPGAUSG SD (CSECT) 008 000000 002FFF
PPEDIT SD (CSECT) 009 000000 000FFF

If BIG was entered, the length for PROGN must not be bigger than X'1FFF' (8K), the length of field EDITS
and SELECT must not be bigger than X'FFF'(4K) and every further CSECT (subroutine) not bigger than
X'2FFF' (12K).

If 12K has been entered, the program length as well as the subroutine length must not be bigger than
X'1FFF' (8K) and CPGTCADS not bigger than X'2FFF!

Error Messages for the Processing 6950

For the processing of CPG programs, following error messages can appear on the screen:

CPG2 Programmer’s
Reference Manual

Page 179

* * * * * * * * * * *
SYSTEM ERRORS CPG 2.5 CLE TT01 TST0 01 0002A0
* * * * * * * * * * *

FILE CPGTST NOT OPENED

PLEASE CONTACT YOUR SUPPORT CENTER

 * * * * * * * * * * * * * * *
 PF1 == => ABEND + PF3 == => IGNORE + OTHER == => END
 * * * * * * * * * * * * * * *

While using the PF1 key, the program abends and a CICS dump will be generated. While using the PF3 key,
a return is made to the used program.

This selection can be restricted at the CPG installation.

While using another function key, the program ends without dump. With the customer configuration can be
controled, if always a dump is set, and an abnormal end of the program (because of DTB). The dump code
and the error messages on the screen give information about the error cause. Following error messages can
appear on the screen:

DECISION TABLE PROCESSING

If always only the first action is processed, eventually a numbering in the CPG program from column 73 is
processed.

DIVIDE BY ZERO:

At the operation DIV, the field content for the divisor (factor 2) was zero.

DIVISION ERROR:

At the operation DIV, the rules for the field size have not been kept.

ESA ERROR

A HL1 module was called from an program prepared for ESA mode(see chapter 2970) that has not been
compiled with CPG/ESA (CPG versions less than 1.6).

HL1 ERROR

At the EXHM is detected, that a module is called that does not work with the dataset logic and contains files,
that are not defined in the higher main program.

The error is remedied, if you enter a parameter for dataset processing into the options (for example DATaset
or PWA).

CPG2 Programmer’s
Reference Manual

Page 180

HL1 POOL ERROR

At the EXHM is detected, that either the HL1 pool is full or that a HL1 module can not be properly processed
(for example because a private library has not been found at the processing time).

File XXXXX AREA TO SMALL:

• Add the adding of data records no more empty disk storages were found.
• No print output can be processed any more, there is no free transient data area disposable.

File XXXXX INPUT ERROR:

The system can not call up the corresponding unit.
(Hardware defect).
• With a print output was tried to output a record, whose length is bigger than the record length of the

VSAM cluster DFHNTRA.

File XXXXX NOT AVAILABLE:

• An update has been tried, without having processed a CHAIN for this record previously (Put no Get).It

was tried to change a not existing record with update.
• The file component between Define Cluster and CICSFCT does not correspond.
• The service for this access is not generated in the CICSFCP (Reg 9 = X'00') VSAM in the FCP not

upported.
• The service for this access is not generated in the CICSFCT. (Reg 9 unequal X'00' VSAM delete and

delete were not listed as SERVREQ).
• A SYNCP has been set, without previously releasing the files with RNDOM.

File XXXXX NOT IN THE FCT:

An input or output was processed for a file, that is not defined in the CICS-FCT.

File XXXXX NOT OPENED:

The file was not opened for the online processing. A CICS dump is not possible with this error messages.

File XXXXXXXX PROGRAM ERROR

An operation sequence (file access) should be processed, that the TP monitor forbids. Following operations
must not be processed online for the same file:

CPG2 Programmer’s
Reference Manual

Page 181

Error code Operation Operation to be proce ssed
SEQ FU after a READ UPDATE must no t be processed
SEQ FU " " READ CHAIN UPD "
SEQ FA " " READ ADD "
SEQ FL " " READ DELET "
SEQ EF " " EF READ "
UPD FC " " CHAIN UPD CHAIN "
UPD FR " " CHAIN UPD READ "
UPD FB " " CHAIN UPD READB "
UPD FU " " CHAIN UPD CHAIN UPD "
UPD FA " " CHAIN UPD ADD "

If these rules should not have been kept in your applications, this error messages can be suppressed for a
transitional period.

In this case, a corresponding error message will be output on the system console and the programs should
be reengeneered as quick as possible.

Example of such an error message on the console:

--- -------------
F2 002 *** FILE CPGWRK PROGRAM-ERROR UPD FL
F2 002 *** TRANSID TT02 PROGRAM TST002 TERM RZR1 ** **
--- -------------

File XXXXX VSAM ILLOGIC:

This error message appears, if a VSAM error appears, that corresponds to no other error code. The VSAM
error and return code is also indicated on the screen or can be looked up on displacement 2C in the CICS
transaction dump in the transaction storage file (Length = D0) (for example 0008006C = returncode 8 and
errorcode 6C). Too much same keys appeared for the alternative index processing, so that the record length
of the VSAM-AIX was too small. VSAM error/return codes can be looked up in the IBM manual VSE/VSAM
messages and codes (SC 24-5146).

WRONG INDEX:

An operation was processed with variable index. The content of the index field is either zero or bigger than
the number of the defined elements of the corresponding array, or the index is too big at SETIX or SETIN.

READI ERROR

A READI was processed, without a READ, READB or CHAIN UPD having been processed before.

SQRT NEGATIV:

At the operation SQRT a negative field content was found.

TSQUE XXXXXXXX NNN TCA RCODE:

Errors appeared at the output of a Temporary Storage Queue.

XXXXXXXX indicates the name of the storage area, on which should be output.

NNN indicates the temporary storage return code (decimally). (Further details see CICS manual DFHTS
TYPE=PUTQ).

CPG2 Programmer’s
Reference Manual

Page 182

The dump code from the CICS dump gives information about the error type.

 Following codes can appear:

'CPGL' the command level interface is not loaded.

'ECPG' general CPG error messages

'ECPS' storage control. There was not enough storage available for the initialisation of a task.

'ECPT' terminal control. There was no storage available for a screen input or output.

'ECPW' the entry 'TWA size' in the CICS PCT is too small. At HL1 modules, private TWA has been

overwritten per channel.

'NDLI' DL/I users. In the OPTIONS DIVISION the entry ADDressing D is missing.

'QSFI' At a MAP operation, the indicated Map in the QSF has not been found.

'QSFM' errors in the directory or phase not found.

'QSFS' Size detected.

'QSFT' a Map instruction was set in a Non Terminal Task. That abend code appears in the statistic.

'QSFV' the directory is full.

'QSFZ' there are too much fields in a Map.

'U098' in the CPG2 ..print programm, the output contains only X'00'.

'U099' in the CPG2..print program, the output is bigger than 1904 bytes.

Error Messages during the Processing 6970

During the processing of online programs under the TP monitor CICS following errors can appear:

Unplanned CICS shut down

Cause: Storage violation (see storage violation).

Removal: 1. Print a dump. The cause is the transaction with more than 20 pages in the dump. After

the restart, the program must be immediately disabled.

CPG2 Programmer’s
Reference Manual

Page 183

Storage violation

Cause: 1. TWA size too small (see unplanned CICS shut down). (Is checked at programs which

were compiled with CPG Release 1.2. or higher)

2. The operations BEGAS and ENDAS were used and an assembler statement transfers
data to an address outside the program.

3. The operation COPY was used and an assembler statement transfers data to an address
outside the program.

4. at Temporary Storage two areas with different lengths have the same name.

5. Assembler error messages in the CPG program were not heeded.

6. Before a SYNCP instruction, files were not released with RNDOM.

7. For the record length for VBOMP, the Prefix has not been counted.

8. At the ADD function the same file has been called two times with EXCPT.

9. In the output, DIAG was used twice with indicators under the same file output.

Removal: Go to 'DFHCSA' in the CICS-DUMP. From 'storage +1' plus 4C the address of the last active

transaction is indicated.

CICS Loop

 Cause: 1. The print output in the CPG program has no positive output line.

2. Two EXCPT lines are coded behind each other without output field.

3. VSAM file errors (Task has been terminated at the CA split).

Removal: Cancel CICS and print Dump. For a file error, Forward Recovery must be used. At task

errors the program has to be disabled immediately after the restart.

CICS Data Base Loop

Cause: A VSAM file with SHR 3 was destroyed in the Batch as well as online.

Removal: Cancel CICS. In register 1, in the partition SAVE-AREA, the address of the defective VSAM

file (ACB) is indicated.
Determine online VSAM files with SHR 3:

In the FCT, the files have the entry 'ACCMETH = (VSAM, KSDS,KEY)'. Run a verify for the
corresponding file.

At unsuccessful Verify a Delete/Define Cluster must be processed.

CICS terminal Dataset Loop

Cause: Local control units were not ready at CICS start.

Removal: Cancel CICS. Process IPL for VSE. Switch on local control units. Start CICS again.

CPG2 Programmer’s
Reference Manual

Page 184

Locked Transactions

Cause: An Update file is locked for other tasks.

For a conversational oriented program with DTB = YES in the PCT,
the instruction 'SYNCP' has been coded wrong or not been coded.

Removal:

1. CSMT Term,Outserv, all
2. Switch dump area
3. CSMT Term,inserv,all
4. Print dump area

For the locked tasks give the corresponding dumps to theapplication programmer. The corresponding file
name is in the Task Dump 'TCA USER' from position X'84'.

VSAM Illogic Error

Cause: 1. Pseudo record was missing for ADD file.

2. Delete/Define was faulty.

3. At a VSAM file with variable record length, the four bytes offset has been forgotten.

4. At an ESDS/RRDS file the right RBA was not found.

Removal: The exact VSAM error code will be indicated on the screen.

CICS works unusually slowly

Cause: 1. VSIZE of the CICS partition is too small.

2. In the PCT, DTB = YES was indicated and in the CPG program no 'SYNCP' was given.

3. AMXT in the SIT is positioned too small.

4. In the CPG program many accesses are started on one or several files (VBOMP)

5. Priority of CICS has been given wrongly.

Removal: 1. Extend VSIZE.

2. Cancel CICS and print Dump. Examine CICS dump on occupied storage areas in the
DTB area. Disable the determined program after the restart.

3. Increase the number of the active tasks with 'CSMT AMX'. Converse afterwards DFHSIT
with new AMX.

4. Print CICS statistic. Check the listed files in the section 'file statistic'.

5. The priority for CICS must be set high by the operator.

CPG2 Programmer’s
Reference Manual

Page 185

Task abend with ASRA

Cause: 1. Wrong output pattern.

2. Read packed data without 'PAC'.

3. Read unpacked data with 'PAC'.

4. A numerical field contains no packed data.

5. Error in an assembler subroutine.

6. The task has been destroyed by storage violation

7. A CPG program was called from an assembler program with XCTL, thereby the TWA has
not been initialized from the XCTL.

8. At the EXPR and CSA offset, the offset is not in the CPGUCCBA and consequently not in
the CPGCCI or not in the CPGURSIT and consequently not in CPGWRK.

Removal:

1 to 5. Print dump, search faulty field and remedy the error cause.

6. Print dump and determine the storage violator. Disable the storage violator with DISAB.
Load the task with 'CSMT NEW,PGRMID='.

7. Enter a XC 256(116,12),256(12) before a XCTL (for normall CPG-TWA), otherwise
consider the offset in accordance (for example for datasets).

Task abend with AICA

Cause: 1. Program loop. A GOTO operation branches to a TAG lying previously and the loop will not

be interrupted by a READ screen or a WAIT.
2. In the CPG program was branched to BEGSR or ENDSR in the subroutine with GOTO.
3. Without an input/output interruption, a routine is processed so often, that the maximum
time determined by the CICS is reached.

4. Within a DO loop, the operation CLEAR was used.

5. At a DO WHILE operation an indicator was entered by mistake.

Removal: 1. Remove or interrupt the loop.

2. A TAG line must be defined for GOTO in the SR routine.

3. Set time higher in the CICS or interrupt routine by a 'WAIT'.

Task abend with ASCF

1. In the input for temp. storage group switches were used.

Task abend with ATNI

1. It was tried to output not representable signs onto the screen.

Task abend with APCT

1. A HL1 module has not been found.

CPG2 Programmer’s
Reference Manual

Page 186

Tables, Operation codes 7000

Tables 7000

Overview of the Procedure Division 7000

The following table gives an overview of the possible entries for the several operations. Compare therefore
the syntax rules in the chapter 'Operations'. The general description of an operation is described there as
follows:

--- -------------------
(ON) OP (SV) (BD)
 (F1) OC (OE) (DY) (F1) (DY) (OK) (F2) (DY) (EG) (LG)
--- -------------------

The abbreviations have the meanings that are described in the following list. Expressions in brackets can be
used at choice, expressions without brackets are absolutely requested.

ON condition query
OP operation
 OC operation code (ADD, READ, DO)
 OE extended operation code (WHILE, UNTIL)
 F1 Factor 1
 OK Operator (bigger smaller equal)
 F2 Factor 2
 EG result field
 DY Dummy word (IS FROM TO THAN THEN)
 LG Length field (only for the OCs DLI and QSSA)
SV Service query
BD set conditions (switches 01 to 99)

BO logical linking with AND and OR

In the following list, the different descriptions for all operations are listed.

(ON) F1 ACCEPT F2 (KW EG) (SV) (SV) BD
(ON) AFOOT F2 EG (SV) (BD)
 (ON) AVERAGE F2 EG (SV) (BD)
 F1 BEGDT
 F1 BEGSR
 (ON) BREAK (SV)
 (ON) CALL F2 (EG)
 (ON) F1 CHAIN F2 (KW EG) (SV) (SV) (BD)
 (ON) F1 CHANG(E) F2
 (ON) CHECK F2 (SV) (BD)
 (ON) CLOSE F2 (SV) (BD)
 (ON) COMRG EG
 (ON) COM-REG EG
 (ON) CONT(INUE)
 (ON) CONVERT (F2 INTO) EG (SV)
 (ON) CONVT (F2 INTO) EG (SV)
 (ON) DEBUG (SV)
 (ON) DELC F2 EG
 (ON) (F1) DELETE F2

CPG2 Programmer’s
Reference Manual

Page 187

 F1 DEQ(UEUE) (SV)
 (ON) F1 DISPLAY
 (ON) F1 DLI F2 EG LG (SV) BD
 (ON) DO (OE) (DY) (F1) (OK) (DY) (F2) (DY) (EG) (SV)
 or DO OE F1 OK F2 (BO)
 (ON) F1 DSPLY
 (ON) DUMP (F2)
 (ON) EDIT EG ((TYPE) F2) (SV) (BD)
 (ON) ELIM(INATE) F2 EG
 ELSE
 (ON) END
 END-EVALUATE
 (ON) ENDDO
 ENDDT
 ENDEV
 ENDIF
 (F1) ENDSR
 ENQ(UEUE) F2 (SV)
 EVALUATE
 (ON) EXCPT (F2) (SV) (BD)
 (ON) EXECUTE F2 (SV)
 (ON) EXHM F2 (EG) (SV)
 (ON) EXHM-VAR F2
 (ON) EXITD EG (SV)
 (ON) EXITI F2
 (ON) EXITP F2 (SV)
 (ON) EXITP-VAR F2 (SV)
 (ON) (F1) EXITS F2 EG (SV)
 (ON) EXITT F2 (SV)
 (ON) EXITT-VAR EG
 (ON) (F1) EXIT-SEND F2 EG (SV)
 (ON) EXIT-TRANS F2 (SV)
 (ON) (F1) EXPR F2 (SV)
 (ON) EXPR-VAR F2 (SV)
 (ON) EXSR F2 (BD)
 (ON) FILL F2 (DY) EG
 (ON) F1 FIND F2 (BD)
 (ON) GETCHANNEL
 (ON) GETHS
 (ON) F1 GET-UPDATE F2 (KW EG) (SV) (SV) BD
 (ON) GO(TO) F2 (SV)
 (ON) IF F1 (DY) OK F2 (DY) (BO)
 (ON) IF SV BD (BD) (BD)
 (ON) IF-DAT F2 (BO)
 F1 IF-DATI F2 (BO)
 F1 IF-DATK F2 (BO)
 (ON) JLB F2
 (ON) JRB F2
 (ON) JRC F2 EG
 (ON) JRZ EG
 (ON) LEFT-SHIFT F2
 (ON) (F1) LIST F2 (DY) (SV) (E G)
 (ON) LIST-VAR EG
 (ON) LOADT F2 (SV)
 (ON) LOADT-VAR F2 (SV)
 LOKUP F1 OK F2
 LOOK-UP F1 OK F2
 (ON) MAP F2 (SV1) (SV2)
 (ON) MAP-VAR EG (SV)
 (ON) MAPD F2 (SV1) (SV2)
 (ON) MAPD-VAR EG (SV)
 (ON) MAPI F2 (SV1) (SV2)

CPG2 Programmer’s
Reference Manual

Page 188

 (ON) MAPI-VAR EG (SV)
 (ON) MAPO EG (SV)
 (ON) MAPO-VAR EG
 (ON) F1 MAPP F2 (SV1) (SV2)
 (ON) F1 MAPP-VAR EG (SV)
 (ON) MOVE(R) F2 (DY) EG (SV)
 (ON) MOVEA F2 (DY) EG
 (ON) MOVEL F2 (DY) EG (SV)
 (ON) MOVEN F2 (DY) EG (SV) (BD)
 (ON) MOVEV F2 (DY) EG (SV)
 (ON) MOVE-ARRAY F2 (DY) EG
 (ON) MOVE-LEFT F2 (DY) EG (SV)
 (ON) MOVE-REST F2 (DY) EG (SV)
 (ON) MOVE-RIGHT EG (SV)
 (ON) MOVE(R) F2 (DY) EG (SV)
 (ON) MVR EG
 (ON) OPEN F2 (SV) (BD)
 PARM F2
 PARAMETER F2
 (ON) PERFORM F2 (BD)
 PROGRAM(M) F2 (EG)
 (ON) PROT F2 (SV)
 (ON) PROTECTION F2 (SV)
 (ON) PURGE F2
 (ON) (F1) QSSA F2 EG LG (SV) O K (SV)
 (ON) RANDOM F2
 (ON) (F1) READ F2 (SV)
 (ON) (F1) READB F2
 (ON) (F1) READB-PAGE F2 EG
 (ON) READI F2 (SV)
 (ON) (F1) READP F2 EG
 (ON) (F1) READ-BACK F2
 (ON) (F1) READ-PAGE F2 EG
 (ON) RECEIVE F2 (SV1) SV2)
 (ON) (F1) REPLC F2 EG
 (ON) RIGHT F2
 (ON) RIGHT-CHAR F2 EG
 (ON) RIGHT-ZERO EG
 (ON) RNDOM F2
 (ON) ROLL EG
 (ON) ROLLB EG
 (ON) ROLL-BACK EG
 (ON) SAVET F2 (SV)
 (ON) SAVET-VAR F2
 F1 SCAN F2 (EG) (BD)
 (ON) SCREENDUMP (F2)
 (ON) SDUMP (F2)
 (ON) SELCT EG (TYPE F2) (S V)
 (ON) SELECT EG (TYPE F2) (S V)
 (ON) SEND EG (SV)
 (ON) F1 SETLL F2
 (ON) F1 SET-LIMIT F2
 (ON) SORT(A) F2 (SV)
 (ON) SQRT F2 EG (SV)
 (ON) SYNCP(OINT) (SV)
 F1 (TAG)
 (ON) TESTF F2 (DY) EG (SV)
 (ON) TESTT F2 BD
 (ON) TEST-FIELD F2 (DY) EG (SV)
 (ON) TIME EG
 (ON) TWALD F2 (SV)
 (ON) TWASV F2 (SV)

CPG2 Programmer’s
Reference Manual

Page 189

 (ON) TWA-LOAD F2
 (ON) TWA-SAVE F2
 (ON) TWALD-VAR F2
 (ON) TWASV-VAR F2
 (ON) UCTRN F2
 (ON) F1 UPDAT(E) F2 EG
 (ON) F1 USSA (SV)
 (ON) F1 VBOMP F2 EG
 (ON) VSLCT F2
 (ON) WAIT (F2)
 WHEN F1 OK F2 (BO)
 (ON) F1 WRITE F2 EG
 (ON) XFOOT F2 EG (SV) (BD)
 (ON) EG = F1 (OK) (F2) (S V)

CPG2 Programmer’s
Reference Manual

Page 190

Dummy Words 7010

For the moment, following words are identified as dummy words and must
not be used as field names:

BE BEI BY
FROM
GIVING
INTO IS
WITH
ON
SHALL
THAN THEN TIMES TO

Reserved Names 7015

Following names are reserved and must not be used as field names:

- Operation codes

- Dummy words

- CPG internal field names
- CPGxxx
- Date and time fields like UDATE, UTIME etc.
- CP0000-CP9999, which can be generated internally for names with more than six places and

internal Tags.
- CP00-CP99, which can be generated internally for long array names.

It is also recommended, to note the following reserved names:

Phases: With the different CPG service levels, a high number of phases are delivered. They start
with

CPG......HL1......HMH......HMQ

Masks: The QSF maps delivered with the CPG installation have names which start with Q.

Storages: The storages used in the delivered CPG programs have names which start with TP or Q.

CPG2 Programmer’s
Reference Manual

Page 191

CPG screen attributes 7020

The following table shows the field characteristics in dependence of the CPG attribute for screen outputs.

CPG
Attribut

CICS
Hex

Protected
/ None

D: Double
bright

N: Normal
Numeric

al

Selector
Pen

detectable
MDT
set

Color
Term

Color
Printer

U 40 N green black

K C1 N J green black

Q C4 N J green black

B C5 N J J green black

W 50 N J green black

E D1 N J J green black

J D4 N J J green black

G D5 N J J J green black

A C8 N D J red red

C C9 N D J J red red

N D8 N D J J red red

H D0 N D J J J red red

X 4C N NONE

D 4D N NONE J

Y 5C N NONE J

Z 5D N NONE J J

0 60 J blue blue

1 61 J J blue blue

2 E4 J blue blue

3 E5 J J blue blue

S F0 J

R F1 J J

I F4 J

O F5 J J

4 E8 J D white green

5 E9 J D J white green

P F8 J D white green

L F8 J D white green

M F9 J D J white green

6 6C J NONE

7 6D J NONE J

8 7C J NONE

T 7D J NONE J

If there is no attribute indicated, S will be set as default.

CPG2 Programmer’s
Reference Manual

Page 192

CPG output Write Control Character 7030

The following table shows the WCC (Write Control Character) entries, that can be indicated in the record
description of the output division, alternatively to a combination of the key words 'BEEp', 'MODified' and
'LOCked'.

CPG
Entry WCC Hex Beep

Modified
Data Tag On

Keyboard
Locked

K C0 On Lock
L C1 Lock
M C2 On

C3
N C4 Beep On Lock
O C5 Beep Lock
S C6 Beep On
H C7 Beep

CPG2 Programmer’s
Reference Manual

Page 193

Highest values for a CPG-program 7040

Standard or maximum program extension 24 K

biggest Batch program and HL1 modules 20 K

HL1 Batch standard or maximum TWA size 8 K

Standard for maximum size of the TWA 4 K

Standard for maximum length of an input 8 K

or output record

Maximum size of the TIOA (Terminal I/O-Area)

Maximum length of alphanumerical fields 256 Bytes

Maximum length of numerical fields (15 places) 8 Bytes

Number of entries in the name table 2000

maximum number of arrays 100

maximum number of files and LIST operations 100

maximum number of entries in data structures 1000

maximum number of structure 50

maximum number of files in the standard file table 100

max. number of DO or IF operations in the program 999

max. number of subroutines (BEGSR) in the program 999

max. interlocking of DO or IF operations

maximum length of literals

(including inverted commas for alphanumerical)

numerical in the procedure division (F1, F2) 10 places

alphanumerical in procedure and output division 26 places

A wished program size with a maximum TWA-size of 8K can be used alternatively. This will be reached
while using another adress block. Therefore you must use the entries 'BIG' and 'ADD x' in the options
parameter list and note the resulting limits.

The same applies for an extension of the TWA on 12 K with the options parameter 12K. In this case, the
necessary change of the adressing will be processed internally.

The max. input length of 8K may be extended via the field CPGFIS.

Temporary Storage of Data for CICS Users 7050

1. C W A Common Work Area 7050

Max. Length : 3584

CPG2 Programmer’s
Reference Manual

Page 194

Storage medium : Main storage

Validity : System wide

Definition : System initialisation

Update : yes

Adressing : EDIT/SELCT CPGCSA

Aptitude : For general information, which must be disposable sytem wide.

Important Lay out conventions should be installed. The data will not be deleted automatically.

2. T C T User Area 7055

Max. Length 255 Bytes , by CPG program 245 Bytes.

Storage medium : Main storage

Validity: ordered to the data station

Definition: In the TCT

Update : yes

Adressing EDIT/SELCT CPGTCT

Aptitude For information, that has to be stored temporarly dependent on a terminal

Important : Data will not be deleted automatically.

3. Temporary Storage 7060

Max. Length 32.000 records of 8 K length.

Storage medium Main storage or 'Auxiliary' Subpool 5 or VSAM ESDS

Validity : Dependent on name conventions

Definition : From the first user, who stores data under a name.

Update : Yes

Aptitude : Information to be temporarily stored

Important An existing TS record must not be extended during a modification. Therefore a list of the

several TS queues should be kept.

CPG2 Programmer’s
Reference Manual

Page 195

Edit Codes for numerical Fields 7070

Edit Code with 2
decimal

positions

Pos. Value
without decimal

Positions

Pos. Value
with 3

decimal
Positions

Not edited 1234567 1234567 00120
1 12.345,67 1.234.567 0,120
2 12.345,67 1.234.567 120
3 12345,67 1234567 0,120
4 12345,67 1234567 120
A 12.345,67 1.234.567 0,120CR
B 12.345,67 1.234.567 120CR
C 12345,67 1234567 0,120CR
D 12345,67 1234567 120CR
J 12.345,67 1.234.567 0,120-
K 12.345,67 1.234.567 120-
L 12345,67 1234567 0,120-
M 12345,67 1234567 120-
Y 0/01/20
Z 1234567 1234567 120

Not edited 00012 000000 000000
1 120 0,00 0
2 120
3 120 0,00 0
4 120
A 120CR 0,00 0
B 120CR
C 120CR 0,00 0
D 120CR
J 120- 0,00 0
K 120-
L 120- 0,00 0
M 120-
Y 0.01.20 0.00.00 0.00.00
Z 120

In the american spelling, decimal signs and thousand points are exchanged, and for the date a '/' is set
instead of a '.'. To reach this description, the system programmer must take an corresponding entry in the
system initialisation table CPGURSIT.

For the date editing with Y, the leading zeros can be suppressed. If a date field is equal zero, so a blank will
be indicated. You reach this editing, if you set a protection star in addition to the edit code Y.

CPG2 Programmer’s
Reference Manual

Page 196

Vocabulary 7200

Dummy word A dummy word is a connecting word in the text, which adjustes the text in the colloquial

language, however without importance for the program. Example: The program text IF
OTTO IS LESS THAN HUGO may also be written in the form IF OTTO LESS HUGO. The
words IS and THAN are dummy words. Dummy words can be different depending on the
division.

Field A field is a particular number of storage places to take up data, which are grouped to an unit.

A field must be defined before the start of the processing, that means, it must be
communicated to the system, under which name the data should be called, of which type the
data are, and how much characters the field should take at most. See also chapter 2, data
fields.

Array An array is a particular number of fields with the same field characteristics (name, type,

length, decimal places). An array must be defined like a field before the processing. See
also chapter 2, arrays. The several fields of the array are also called elements. An array can
be processed group wise as well as element wise.

Card If the expression card is used in the text of this manual, a text line or a CPG2 statement is

meant.

Record A record is a sequence of words, which are attached to each other according to the syntax

rules, and are closed with a record end sign.

Key word. A key word is a word, that always contains an instruction for the compiler. Example: In the

text IF OTTO IS LESS THAN HUGO , the words IF and LESS are key words. Key words
must not be used as names for variables. Key words may be different depending on the
division.

Statement A statement is a sequence of words, that causes the program to act in a certain way.

Word In CPG, a word means a sequence of wished characters in the program text, which follows

after a blank, and will be closed by a blank or a record end sign. A word can be at most 30
characters long.

Example for Words:

HUGO
1
END-OF-WORKING-DAY

Special forms for words are 'key words' and 'dummy words'.

Syntax Rules 7300

This chapter contains the syntax rules in short form. Detailed description, see chapter 3.

OPTIONS

--- -------------------
 KW (KW) (DY) (EN) (DY) (KW) (DY) (EN) (DY) ...
--- -------------------
KW Key word. As first key word, 'OPTIONS' is absolutely requested. Afterwards, key words can be
completed with entries or dummy words and follow in any order according to chapter 3300.

CPG2 Programmer’s
Reference Manual

Page 197

DY Dummy word
EN Entry to a key word

--- -------------------
Example - OPTIONS MVS LOWER CASE LETTERS TITLE IS E XAMPLE;
 KW KW KW DY DY KW DY EN
--- -------------------

FILES

--- -------------------
1. KW DN
2. KW DN DN (DN) (DN) ...
3. KW DN EN (EN) EN (EN) EN (EN EN EN) EN
--- -------------------
KW Key word. As key word 'FILE' is requested or at multiple definition (case 2.) 'FILES'.
DN File name
EN Entry for manual description (see chapter 3400).

Example - FILE KUNDEN;
 - FILES KUNDEN ARTIKEL;

- FILE TEST INPUT FIX 1000 200 5 KEY INDEX DISK
--- -------------------

DATA DIVISION

--- -------------------
 FN (EL OK) LG (DP)
or KW ST (DY) (SA)
or KW (FN)
--- -------------------
FN Name of the field or the array
EL Number of elements of an array
OK Operator '*' multiplies length with number of elements.
LG Length of the field in characters (places)
DP Number of decimal places
--
or
KW 'DEFINE' for a data dictionary structure
ST Structure name
DY Dummy word 'TYPE'
SA Record type of the structure
--
or
KW 'ORG' to position in the TWA
FN Field name

Example - VALUE 11 2; * VALUE is num. 11 places 2 Dez.pl.
 - PAGE 24 * 80; * Array 24 fields with 80 places each
 - TEXT 25; * Alpha field with 25 places
or - DEFINE CPGWRK; * Definition of th e structure 'CPGWRK'
or - ORG; * Positioning

CPG2 Programmer’s
Reference Manual

Page 198

FORMS

--- -------------------
 KW FN (KW LG) ((KW) LN (KW) CH) ((KW) LN (KW) CH) ...
--- -------------------
KW Key word: 'FORMS' is requested as first key word. 'LENGTH' indicates the following entry as form

length in lines. 'LINE' or 'LINE' indicates the following entry as line number. 'CHAN' or 'KANAL'
indicates the following entry as skip channel

FN Name of the printer in the FILES DIVISION
LG Length of the form in the line
LN Line nubmer
CH Channel

Example

 - FORMS DR01
 - FORMS DR02 LENGTH 36
 - FORMS DR03 LINE 3 CHAN 01 LINE 66 CHAN 1 2
 - FORMS DR05 LENGTH 36 003 01 066 12
 - FORMS DR06 LENGTH 36 ZEILE 3 KANAL 1 ZEI LE 66 KANAL 12

INPUT DIVISION

Record description

--- -------------------
 KW DN (VAR) (BA)
--- -------------------
KW Key word 'FILE' or 'FIELD'
DN Name of the file (up to eight places long)
VAR variable input positions for big files
BA Condition query (see below)

Condition query (BA)

The condition query is different for the several file types. The general form depends on the file type:

--- -------------------
 Disk (TP) (BD) (CA) (AND) (CA) (AND) (CA)
 CA = PS (NOT) CD CH
 Screen (TP) (BD)
 Data Dictionary TP (KW SA)
 Datastructure TP (LG)
 HL1 Data channel TP
--- -------------------

In this description mean:

TP Filetyp (z.B. DS = Data structure)
BD Condition (Switch 01 to 99)
SA Record type (with the key word 'TYPE')
CA Character query
PS Position in the record
CD Character code (Character Digit Zone)
CH Character
LG Length of the data structure
AND Connection of several queries
NOT Reversal (condition is not fulfilled)

CPG2 Programmer’s
Reference Manual

Page 199

Example
 - FILE BILD
 - FILE DISK
 - FILE KUNDEN DD
 - FILE DISK KF 11 1 NOT CHAR A 2 CHAR B 3 CHAR #
 - FILE ARTIKEL AA 01 1 C A AND 2 C R
 - FILE OTTO DS
 - FILE HUGO DS 200
 - FILE MYROOT DS
 - FILE XKANAL HS
 - FILE A0001 HS
 - FIELD HUGO
 - FIELD ALPHANUMERIC-STRING

Field description

--- -------------------
 (SF) VP BP (DP) FN (SP) (BD)
--- -------------------
SF Storage form (packed, binary, logical)
VP from position in the record (num. value max. 4 places)
BP up to position in the record (num. value max. 4 places)
DP Number of decimal places (character from 0 to 9)
FN Field name
SP Key word for the selector pen indicator
BD a selector pen indicator or a control level indicator L0 to L9 or up to three input indicators

Example

 - 1 2 SA; * 1 to 2 alph a field SA
 - 3 9 2 WERT; * 3 to 9 WERT with 2 decimals
 - P 10 11 0 LNR; * 10 - 11 LNR packed
 - 1 3 0 DIV # # 99; * Switch 99, if DIV = 0
 - 511 520 KNR SP 01; * Switch 01, if KNR was choosen
 - 11 13 WGRP L1; * Group chang e L1 at WGRP

Syntax Rules 7304

PROCEDURE DIVISION

--- ------------------
 (ON) OP (SV) (BD)
--- ------------------
ON Condition query
OP Processing of the operation
SV Service query
BD Set conditions

The condition query (ON).

--- -------------------
 KW (NOT) BD (AND NOT) BD (AND NOT) BD
--- -------------------

CPG2 Programmer’s
Reference Manual

Page 200

KW Key word 'ON'
BD Condition switch (01 to 99, Px, Tx, Ax, Cx, DE..)
AND Dummy word and -connection
NOT Reversal (condition not fulfilled)

--- -------------------
 OC (OE) (DY) (F1) (DY) (NOT) (OK) (F2) (DY) (EG)
short: OC (F1) (F2) (EG)
--- -------------------
OP Operation key word (see chapter 4)
OE widened OP. code (UNTIL, WHILE ...)
F1 Faktor 1 (field name)
F2 Faktor 2 (field name)
EG Result (field name)
DY Dummy words (FROM, TO, WITH, TIMES ...)
OK OPERATORS (GT, LT, EQ, >, <, =)

Example:

- EXCPT OP
- DO 10 TIMES OP F2 DY
- DO FROM X TO Y OP DY F1 DY F2
- MOVE TEXT TO LINE OP F1 DY F2
- X = 0 EG OP F2
- X = A + B EG OP F1 OK F2
- READ OTTO OP F2
- MAP ARTIKEL OP F2
- START F1
- START TAG F1 OP

OUTPUT DIVISION

Record description

--- -------------------
 KW DN (KW) (ON) (LB)
--- -------------------
KW 1. Key word 'FILE' or 'FIELD'
DN Filename (max 8 places) or field name
KW Key words according to the unit

Screen (ERASE, UNP, BEEP, MOD, LOCK)
Disk (ADD, DEL, ALG)
Printer (SPACE X X, SKIP)

ON Condition query (like procedure division)
LB Label

Field description

--- -------------------
 (ON) FN PS (LT) (AT) (EC) (CR) (CL) (EH)
--- -------------------
ON Condition query (see procedure division)
FN Field name
PS Position in the record (num. value max. 4 places)

For the screen LLCC (LL = Line, CC = column)

CPG2 Programmer’s
Reference Manual

Page 201

LT Literal (text literal or pattern)
AT Screen attribute
EC Edit code for numerical values
CR CURSOR or delete after the output (BLANK)
CL Color (W, R, B, G, Y, P, T)
EH EH value (BLINK, REVERSE, UNDERSCORE)

Key words 7400

Key words in the Procedure Division 7410

The following key words are reserved for the operations in the procedure division. They must not be used as
names of variables or as names of labels:

AFOOT
BEGDT BEGSR
CAB CALL CHAIN CHECK CHANG
 CLEAR CLOSE COMP COMRG CONT CONVT CO PY
DEBUG DELC DELET DEQ DLI DO DSPLY DU MP
EDIT ELIM ELSE END ENDDO ENDDT ENDEV EN DIF
 ENDSR ENQ EREAD EXCPT EXHM EXITD EX ITI EXITP
 EXITS EXITT EXPR EXSR
FILL FIND
GETHS GOTO
IF
JLB JRB JRC JRZ
LIST LOADT LOKUP
MACRO MAP MAPD MAPI MAPO MAPP MOVE MO VEA
 MOVEL MOVEN MOVEV MULT MVR
OPEN
PARM PROT PURGE
QSSA
READ READB READI READP REPLC RNDOM ROLL RO LLB
SAVET SCAN SDUMP SELCT SETLL
 SORTA SORTA SQRT SYNCP
TAG TESTB TESTF TIME TWALD
 TWASV
UCTRN UPDAT USSA
WAIT WHEN WRITE
XFOOT

ACCEPT AVERAGE
CHANGE COMPARE COM-REG CONVERT
DEQUEUE DELETE DISPLAY
ELIMINATE END-EVALUATE ENQUEUE EVALUATE EXECUTE
 EXHM-VAR EXIT-SEND EXIT-TRANS EXITP-VAR
 EXITT-VAR EXPR-VAR
GET-UPDATE GETCHANNEL GO
IF-DAT IF-DATE IF-DATI
LEFT-SHIFT LIST-VAR LOADT-VAR LOOK-UP
MAP-VAR MAPD-VAR MAPI-VAR MAPO-VAR MAPP-VAR
MOVER MOVE-ARRAY MOVE-LEFT MOVE-REST MOVE-RIGHT
PARAMETER PERFORM PROGRAM PROGRAM PROTECTION
RANDOM READ-BACK READ-PAGE READB-PAGE RECEIVE
 REPLACE RIGHT RIGHT-CHAR RIGHT-ZERO

CPG2 Programmer’s
Reference Manual

Page 202

 ROLL-BACK
SAVET-VAR SCREENDUMP SELECT SEND SET
 SET-LIMIT SQARE-ROOT
 SYNCPOINT
TDUMP TEST-FIELD TEST-ZONE TWA-LOAD TWA-SAVE
 TWALD-VAR TWASV-VAR
UPDATE

Accessories 7500

Change CPG2 syntax into RPG like syntax 7520

The following program offers the possibility to change programs coded in CPG2 syntax into RPG like source
codes.

- OPTIONS PHASE xxxxxx
- BATCH
- TITEL free#form#punching
- END
- FILE IJSYS03 INPUT FIX 1600 80 DISK
- FILE OKARTE OUTPUT VAR 80 PUNCHER
- -I; FILE IJSYS03
- 1 80 SATZ
- 6 7 CHECK
- -C
- DO UNTIL CPGFRC >< ' '; * up to End of Fi le
- READ IJSYS03
- IF CPGFRC = ' ' AND
- IF CHECK >< '-*'
- EXCPT
- ENDIF
- ENDDO
- -O;
- FILE OKARTE
- SATZ 80

Processing mode:

The program indicated above has to be coded and compiled. Afterwards, the ASSGN- and EXEC LNKEDT
instructions in the JCL cards of the CPG2 source code will be replaced by the instruction

// EXEC xxxxxx,SIZE=AUTO (Phase of the program above)

After the compiling of this program, the CPG2 program is disposed in the Punch Queue in RPG format.

The compilation of this Batch program is only possible with CPG3.

CPG2 Programmer’s
Reference Manual

Page 203

Creation of a Data View 7530

In relational data bases, a data view is installed online and rests in the main storage for the whole time of its
processing.

To simulate this processing form, a view is created per program, per CPG3..query or per QTS and stored on
a file. The view will be loaded out of this file into the main storage only if it has been called in a program with
the instruction FIND. Then the loaded view rests in the main storage up to the Shut Down of the TP Monitor.
A view can also be processed in a Batch program, if the available GETVIS area in the partition is sufficent
for the processing.

Processing mode for the CPG2 User 7531

In this case, the view will be installed in two steps: First, the structure of the table is described with a CPG
program and its elements are filled with values, then the view will be documented with the service program
CPGZCTB and stored in the file CPGWKV.

1. Step: Filling of the view with a CPG-program

The following CPG-program shows the filling of a view examplary. Simplistically is assumed, that the whole
table will be entered via the screen (via the Map INPUT).

- FILE CPGWKV UPD VAR 4020 20 KSDS
- -D
- SATZ 0 * 22
- KDNR 5 0
- FIRMA 13
- PLZ 6
- LNR 5 0
- KEY 20
- -C
- DO LOOP
- MAPD EINGABE
- LNR = LNR + 1
- EDIT KEY
- KEY CHAIN CPGWKV CHECK
- IF CPGFRC = ' '
- EXCPT AENDERN
- ELSE
- EXCPT NEU-ANLEGEN
- ENDIF
- ENDDO
- -O
- FILE CPGWKV ADD NEU-ANLEGEN
- KEY 20
- RECORD 42
- FILE CPGWKV AENDERN
- SATZ 42
- FIELD KEY
- 2 '22'
- LNR 20 PACKED

CPG2 Programmer’s
Reference Manual

Page 204

The installed program serves as input for the service program described in step 2. Therefore the file access
and the key positions must correspond absolutely with the example.

The example has been chosen, to describe the main cards clearly. Normally a Batch programm has to be
written, that groupes the data of the view out of one or several files.

2.Step: Document and store the View

The phase CPGZCTB is disposed to document and store the view. A job has to be consctructed like follows:

// JOB JCPGZCTB
// PAUSE close file CPGWKV
// EXEC CPGZCTB,SIZE=AUTO
SYSIPT input data
/*
// PAUSE open file CPGWKV
/&

The SYSIPT input data has following composition:

Places 1 - 4 Name of the table, with which it is called in the instruction FIND.
Places 5 - 7 Length of the table elements
Place 8 L for 'delete a table' (optional)
Places 10 - 12 Persons short signs of the specialist (optional)
Places 13 - 40 Documentation, part 1 (optional)
Places 41 - 80 Documentation, part 2 (optional)

Processing mode for CPG3 Users 7532

The handling of data views will be simplified for the CPG3 users. The CPG3..query can be used for example
to create a view. The service program QTS (Quick Table Service) enables online to delete a view out of
the file or in the main storage, to load a new version from the file and the indication of all tables.

This service programs are described in the CPG3 manual.

CPG Compilation without IJSYS04 7540

With the following JCL Job an example will be given, how to make CPG compilations without an ASSGN
SYSIN instruction. The IJSYS04 file is not necessary for this execution.

This type of the CPG compilation offers advantages in running time, if 3380 disks are installed, or if the
compilation areas are managed with VSAM Space Manager.

CPG2 Programmer’s
Reference Manual

Page 205

* $$ JOB CPGUMW
* $$ PUN DISP=I
// JOB CPGUMW
// EXEC CPGZPUN,SIZE=AUTO
 * $$ JOB CPGASS
 // JOB ASSEMBLY
/*
// EXEC CPG2
 - OPTIONS NOSYSIN;
 :
 : CPG PROGRAM
 :
/*
// EXEC CPGZPUN,SIZE=AUTO
 // EXEC LNKEDT
 /&
 * $$ EOJ
/&
* $$ EOJ

Notes for the JCL cards:

The Power Punch instruction with the parameter DISP=I stores the punched cards into the Power Reader
Queue.

NOS must be entered for No SYSIN as options parameter. The phase CPGZPUN is part of the CPG
installation and delivered with the tape.

CPG for ESA Command Level Programs without CRL 7550

Such programs, that do not use the central routine library, and work with EXEC CICS commands, are
identified with the options parameter CICSESA or the combination CICS ESA.

The compilation of such a program will be processed in three steps. The particular input will be processed
via the Punch Queue with DISP=I.

STEP 1 : CPG compilation with EXEC CPG / CPG2 / HL1
STEP 2 : Command Level Prepocessor EXEC DFHEAP1$
STEP 3 : Assembly with Link EXEC ASSEMBLY

* $$ JOB JNM=CPGUMW
* $$ PUN DISP=I
// JOB CPGUMW
// EXEC CPGZPUN,SIZE=AUTO
 * $$ JOB JNM=CPGPREP
 * $$ PUN DISP=I
 // JOB CPGPREP JOB DFHEAP1$
 // EXEC CPGZPUN,SIZE=AUTO
 * $$ JOB JNM=CPGASM
 // JOB CPGASM JOB ASSEMBLY
/*
// EXEC CPG
 - OPTIONS NOSYSIN CICS ESA.
 :

CPG2 Programmer’s
Reference Manual

Page 206

/*
// EXEC CPGZPUN,SIZE=AUTO
 // EXEC CPGZPUN
 /*
 // EXEC LNKEDT
 /&
 * $$ EOJ
 /&
 * $$ EOJ
/&
* $$ EOJ

Notes for the JCL cards:

The Power Punch instruction with the parameter DISP=I stores the punched cards into the Power Reader
Queue.

NOS must be entered for No SYSIN as options parameter. The phase CPGZPUN is contained in the
delivery area of the CPG.

Accessories 7570

SQL/DS 7570

Up from the service level CPG3, the language SQL is supported directly in CPG programs. So SQL
statements can be integrated in the CPG code as it is instructed by the producer. For the characterisation,
SQL statements begin with the key word SQL.

An example for the SQL processing in CPG3 with Job Control Statements:

CPG2 Programmer’s
Reference Manual

Page 207

// JOB CPGSQL
// LIBDEF PROC,SEARCH=(PRD2.DB2510)
// EXEC PROC=ARISLIBP *-- SQL/DS PRODUCTION LIBRA RY ID PROC
// ON $ABEND GOTO REASS
// EXEC CPGPREP,PARM='USERID=SQLDBA/SQLDBAPW'
 - OPTIONS ROOT PHASE TST026 TITEL SQL-TESTPROG RAM;
 - -D;
 - SQL BEGIN DECLARE SECTION
 - USER 8
 - PASSW 8
 - KDNR 5 0
 - FIRMA 30
 - SQL END DECLARE SECTION
 - -C;
 - USER = 'SQLDBA '
 - PASSW = 'SQLDBAPW'
 - SQL CONNECT :USER IDENTIFIED BY :PASSW
 - SQL DECLARE C2 CURSOR FOR *
 - SQL SELECT KKDNR,KFIRMA *
 - SQL FROM KANDENA *
 - SQL WHERE KKDNR < 3000
 - SQL OPEN C2
 - DO UNTIL CPGMPF = 'P3'
 - SQL FETCH C2 *
 - SQL INTO :KDNR,:FIRMA
 - MAPD BILD; * The return co de is set in the field
 - * SQCODE
 - ENDDO
 - SQL CLOSE C2
 - SQL COMWITH WORK
 - MAPO ENDE
/*
// IF $RC NE 0 THEN
// GOTO ENDE
* STEP HL1
// LIBDEF PHASE,CATALOG=SP4U.ULIBL
// DLBL IJSYSIN,'F4.WORK.04',0,SD,,CISIZE=8192
// EXTENT SYSIPT,PRD201,1,0,46000,4000
ASSGN SYSIPT,122
// EXEC HL1
/*
// IF $RC NE 0 THEN
// GOTO REASS
* STEP ASSEMBLER
CLOSE SYSIPT,READER
ASSGN SYSIN,122
* STEP LNKEDT
// EXEC LNKEDT
// IF $RC EQ 0 THEN
// GOTO ENDE
/. REASS
CLOSE SYSIPT,READER
/. ENDE

CPG2 Programmer’s
Reference Manual

Page 208

Example 1: File Update (conversationally programme d) 8000

File Update Customer Number SHORT NA ME DD.MM.YY

 1 - OPTIONS TITLE File#Update PHASE TEST;
 2 - FILE CPGWRK; * described in Data Dictionary
 3 - DATA DIVISION
 4 - KEY 14
 5 - INPUT DIVISION
 6 - FILE CPGWRK
 7 - 15 100 SATZ
 8 - PROCEDURE DIVISION
 9 - DO LOOP
 10 - MAPD EINGABE
 11 - KEY CHAIN CPGWRK
 12 IF CPGFRC = ' '; * record found
 13 - MAPD ANZEIGE
 14 - IF CPGMPF = 'P1'
 14 - EXCPT
 14 - END
 15 - END
 16 - ENDDO
 17 - OUTPUT DIVISION
 18 - FILE CPGWRK
 19 - SATZ 100

Mapname : EINGABE

FIELD A F E EC C B ATTFLD ALT.E

KEY A C

Mapname : ANZEIGE

FIELD A F E EC C B ATTFLD ALT.E

SATZ A C

The statements were provided left with a current numbering. The following assertion refers in each case to
this statement number.

 1 Options: Title is File Update, phase name is TEST.

2 The file CPGWRK is processed. The file data are taken from the Data Dictionary. (The file can be
processed for update, it has a fixed record length of 100 bytes, the key length is 14 bytes; it is a
VSAM KSDS file.

 3 The Data Division begins here.

 4 The field KEY is defined as fourteen place alphanumeric field for the program.

 5 The Input Division begins here.

CPG2 Programmer’s
Reference Manual

Page 209

 6 From the file CPGWRK shall be read.

7 From the file CPGWRK the places 15 to 100 are read into the field SATZ. Usually the input structure
is not described here in detail. Rather it is maintained in Data Dictionary and inserted from there
during the compilation of the program. Statement 6 would then be: FILE CPGWRK DD, the field
specifications like here in statement 7 could be completely dropped.

 8 The Procedure Division begins here.

 9 A continuous loop begins here.

10 The screen dialog. The screen EINGABE described in the QSF is put out. The program stops and

expects the input of a key field KEY. With the next program function the program starts again and
reads the modified fields of the screen. With the 'CLEAR' key the program can be terminated.

11 With the field KEY the file CPGWRK is accessed directly. If the key is available, then a record is

read from the file according to the Input Division.

If the key is missing, the CPG internal field CPGFRC (File Return Code) is filled with the value 'NF'
(not found). An input transfer does not take place in this case.

12 The File Return Code (see point 11) is queried here. The statements between IF and END are only

executed if a record was found with the CHAIN.

13 Second screen dialog. Here the field SATZ is displayed unprotected, in order to be able to overwrite

the file value.

14 If the program function key 1 was pressed, the program branches to the Output Division. With any

other function key (including DE for a Data Entry) this statement will not be executed.

The program function key can be queried in the field CPGMPF. The keys are compressed on two
places (in the example P1 for PF1).

15 END terminates the IF query. For better documentation you can also operate with the operation

code ENDIF.

16 ENDDO terminates the continuing loop. The execution of the ENDDO causes a branch to the

starting point of the DO-loop, thus here to the line 9.

17 The outputs division begins here.

18 With each EXCPT output a record is updated to the file CPGWRK.

19 The field SATZ is given out onto place 100 of the file CPGWRK.

CPG2 Programmer’s
Reference Manual

Page 210

Example 2: File browse with READ PAGE 8010

The file KUNDEN is a VSAM KSDS file.

File browsing program Customer Number SHORT NAME dd.mm.yy

 1 - OPTIONS TITEL File#browsing#program ROOT PHASE TEST;
 2 - FILE KUNDEN
 3 - -D
 4 - PAGE 20 * 79
 5 - -I
 6 - FILE KUNDEN DD
 7 - -C
 8 - DO LOOP
 9 - KDNR READ-PAGE KUNDEN PAGE
10 - IF CPGFRC = 'EF'; * File Return Code 'End of File'
 - FILL ' ' TO KDNR
 - END
11 - RANDOM KUNDEN
12 - MAPD ANZEIGE
13 - FILL ' ' TO PAGE
14 - ENDDO
15 - -O
16 - FIELD PAGE
17 - KDNR 7
18 - NAME 33
19 - ORT 55
20 - UMSATZ 70 EDITCODE K

Mapname : ANZEIGE

FIELD A F E EC C B ATTFLD ALT.E

PAGE P
21 #### A U C KDNR

Explanations:

 1 CPG2 header specification.

 2 A file with the name 'KUNDEN' is defined.

 3 Beginning of the Data Division.

4 An array with the name 'PAGE' is defined. It consists of 20 fields of 79 bytes length each and shall

take up a screen page with 20 lines. (Line length 79).

 5 Beginning of the Input Division.

6 From the file KUNDEN a record is to be read; the structure of the data record is taken from the Data

Dictionary. In the example the input field specification for the fields KDNR, NAME, ORT and
UMSATZ are insertd into the program during the compilation.

CPG2 Programmer’s
Reference Manual

Page 211

 7 Procedure Division.

 8 Beginning of a continuous loop.

 9 From the file 'KUNDEN' as many records will be read, as the array entered in the result field

contains elements. The first read record is that, whose key is same or higher than the content of the
field 'KDNR'. The page is stored in the array 'PAGE'. The number of lines results from the number of
fields defined under NR.3. For the editing of the lines see No. 15 to 19.

10 With end of file the field CPGFRC will be filled witf 'EF'. It must be queried immediately after the

READ operation.

Here the key for the next read access is filled with blank, to position at the first record of the file in
case of 'End of File'.

11 The file KUNDEN is released with RANDOM. This is an instruction, which is not necessary for the

function of the READ-PAGE. Rather it is considered that display programs usually can be executed
by several users at the same time. Therefore with RANDOM before the following screen dialog the
reading operation is terminated, to release the VSAM-strings.

12 The edited screen page will be sent to the screen in the map ANZEIGE.

13 The instruction FILL is executed here on an array. If the array is not indicated, FILL is executed for

all elements in the same way. So PAGE is initialized with blanks.

14 ENDDO branches back to the appropriate DO. For the execution of the program it means that the

file is displayed page-wise. In the next loop run the array PAGE is filled again with 20 read accesses
to the file KUNDEN. Reading begins with the last read KDNR or with blank, if in the last run End of
File was achieved.

15 The Output Division begins here.

16 Field edit. The editing of the field PAGE is initiated by the instruction READ-PAGE. The field KDNR

is output in position 1 to 7 of all fields of the array, the last byte of NAME is on position 33, the last
byte of ORT on position 55 in each element.

20 The numeric field UMSATZ is with its last byte on position 70 in each element of the page. UMSATZ

is edited with an edit code K (keyword EDITcode): Leading zeros are suppressed; decimal places
are indicated by a comma; if the field is negative, a minus sign is attached to the field; Thousand
position indicators are inserted into the field.

21 In the map, a blank literal with 5 places can be given out unprotected. In the description one enters

the field name KDNR for the 'Additional Input field'.

Thus one can input a key in each screen, with which the next page-wise display begins.

CPG2 Programmer’s
Reference Manual

Page 212

Example 3: File modification program with UPDATE, WRITE 8015

STANDARD TEXT Customer Number SHORT NAME DD.MM.YY

 1 - OPTIONS TIT STANDARDTEXT PHA TEST;

 2 - FILE KUNDEN

 3 - -D
 4 - SATZ 0 * 140
 5 - D1 2
 6 - KDNR 7
 7 - D2 11
 8 - NAME 24
 9 - D3 28
10 - ORT 20
11 - D4 43
12 - UMSATZ 9 2
13 - -I
14 - FILE KUNDEN
 - 1 140 SATZ
15 - -C
16 - DO LOOP
17 - MAPD NUMBER
18 - KDNR CHAIN KUNDEN UPD
19 - MAPD DATEN
20 - IF CPGFRC = ' '
 - KDNR UPDAT KUNDEN SATZ
21 - ELSE
 - KDNR WRITE KUNDEN SATZ
22 - END
23 - END

 Mapname : NUMMER
 ======================

 FIELD A F E EC C B ATTFLD ALT.E

 KDNR A C

 Mapname : DATEN
 ======================

 FELD A F E EC C B ATTFLD ALT.E

 KDNR P
 NAME A C
 ORT A
24 UMSATZ A J

CPG2 Programmer’s
Reference Manual

Page 213

Explanations:

Example 3 shows an update program for a customer master file with the CPG operations UPDAT and
WRITE, that can reduce the programming and memory expenditure depending upon the application (relative
to the file modification with EXCPT, compare the following example).

1 CPG control specification

2 The data of the file KUNDEN are taken from the Data Dictionary.

3 The following fields (in statement 5 to 12) are combined to a field with the name SATZ. The field is

140 places long and alphanumeric. For the field no storage space is reserved in the TWA (entry 0 *),
but it is redefined from left to the right by the fields defined directly afterwards. The programmer
must ensure that the sum of the individual field lengths corresponds with the field length of the
overlaid field. For numeric fields the length of the packed field in bytes has to be calculated, not the
number of digits.

14 From the file KUNDEN a record shall be read in from place 1 to 140. Via the definition of the overlay

in 3,4 the fields KDNR, NAME, ORT and UMSATZ are filled at the same time.

16 Calculations. The starting point of a continuous loop is set. Such a continuous loop causes that the

statement sequence will be executed again and again; it can be left only with the 'CLEAR' key. (In
this sample program).

17 The first instruction in the loop outputs a QSF map with the name NUMBER, in order to read data

from the screen.

18 A disc record is read from the file KUNDEN with the key KDNR. The disc record shall be locked

against further accesses (service function UPD) until the update. If the record is missing, the file
Returncode CPGFRC is filled with NF for 'not found'.

19 The QSF map DATEN is executed and waits for an input.

20 If the record was found, the field SATZ shall be written back into the file KUNDEN in the record with

the key KDNR. Output Divisions are not necessary thereby, however the field SATZ must be
described in the Input Divisions under the file KUNDEN.

21 Like 20, however, if the record was not found with the CHAIN, a record will be added to the file

KUNDEN (CPGFRC is then NF).

24 The field UMSATZ will be edited on the screen with Edit Code J. That means: Leading zeros will be

suppressed, the thousand and million places are separated by a comma, the decimal places by a
point; if the amount is negative, behind the field a '-' (minus sign) will be displayed.

CPG2 Programmer’s
Reference Manual

Page 214

Example 4 : File modification program with EXCPT 8 017

In todays programs the application developer can renounce on the EXCPT instruction completely, if he
works with HL1 Datasets. For specialists EXCPT remains indispensable, however it should be renounced to
operate with switches or to shift the logic out of the Procedure Division into the Output Division.

Under this aspect the first two programs shown below are outdated.

STANDARD TEXT Customer Number SHORT NAME DD.MM.YY

 1 - OPTIONS TITEL STANDARDTEXT ROOT PHASE TEST ;

 2 - FILE KUNDEN

 3 - -I; FILE KUNDEN DD

 4 - -C; DO LOOP
 5 - MAPD NUMMER
 6 - KNR CHAIN KUNDEN UPD 20
 7 - MAPD DATEN
 8 - EXCPT
 9 - ENDDO

10 - -O; FILE KUNDEN DD ON NOT 20 AND NOT P1
11 - FILE KUNDEN DD ADD ON 20 AND NOT P1
12 - FILE KUNDEN DEL ON NOT 20 AND P1

 Mapname : NUMMER
 ======================

 FIELD A F E EC C B ATTFLD ALT.E

 KDNR A C

 Mapname : DATEN
 ======================

 FELD A F E EC C B ATTFLD ALT.E

 KDNR P
 NAME A C
 ORT A
 UMSATZ A J

Explanations:

6 In the case 'Not Found' CHAIN sets the switch 20.

8 The instruction EXCPT branches to the Output Division. Thereby the description of the output is

transfered into the Output Division.

Basically all specifications of the Output Division are executed, if they are not locked by condition
switches or names.

CPG2 Programmer’s
Reference Manual

Page 215

By specification of up to three switches or a name behind the EXCPT a preselection of the Output
Division can be made in the Procedure Division.

The following program modification leads to the same result (exept):

 :
 7 - MAPD DATEN
 8A - ON P1 NOT 20 EXCPT LOESCH
 8B - ON NOT P1 NOT 20 EXCPT AENDER
 8C - ON NOT P1 20 EXCPT HINZU

10 - -O; FILE KUNDEN DD AENDER
11 - FILE KUNDEN DD ADD HINZU
12 - FILE KUNDEN DEL LOESCH

10 On the file KUNDEN a record shall be modified. The names of the fields which are to be modified are

inserted from the Data Dictionary (DD).

11 Like 10, however a new record is to be added to the file. In addition the keyword ADD is necessary,

the sequence must be kept with the key words.

12 Like 10 and 11. For the deletion of a data record the key word DEL is necessary. The following further

modification leads likewise to the same result:

 :
 6 - KNR CHAIN KUNDEN UPD
 7 - MAPD DATEN
 8A - IF CPGFRC = 'NF'
 8B - ON NOT PF1 EXCPT HINZU
 8C - ELSE
 8D - IF CONDITION PF1
 8E - EXCPT LOESCH
 8F - ELSE
 8G - EXCPT AENDER
 8H - ENDIF
 8I - ENDIF
 - -O; FILE KUNDEN DD AENDER
 - FILE KUNDEN DD ADD HINZU
 - FILE KUNDEN DEL LOESCH

6 One can omit the switch (20). The information 'found' or 'not found' is deliverd by the internal field

CPGFRC.

 8 'NF' stands for 'record not found with CHAIN' (not found).

CPG2 Programmer’s
Reference Manual

Page 216

Example 5: RRDS file with numeric key field 8020

RRDS files are processed similarly to KSDS files.

Reading is both possible sequentially and in the direct access mode. Modifications are supported in the form
Update, adding and deletion of a record, that means it can also be determined with the CHAIN whether a
record is available or not.

The individual functions are described in the following on the base of program fragments:

1 - OPTIONS TITEL RRDS#EXAMPLE PHASE TEST;

2 - FILE RRDS
3 - -D; RRN 9 0; * relative re cord number
4 - -I; FILE RRDS; 1 100 SATZ

Sequential reading:

5 - -C; DO UNTIL CPGFRC = 'EF'
6 - 1 READ RRDS
7 - ENDDO
8 - RANDOM RRDS

Add records:

 5 - -C; DO LOOP
 6 - RRN = RRN + 1
 7 - RRN CHAIN RRDS
 8 - IF CPGFRC = 'NF'; * Not found
 9 - EXCPT NEU
10 - ENDIF
11 - ENDDO

Direct access:

5 - -C; RRN = 200
6 - RRN CHAIN RRDS

Update:

5 - -C; RRN CHAIN RRDS UPD
6 - IF CPGFRC = ' '
7 - EXCPT UPDATE

Deletion of a record:

5 - -C; RRN CHAIN RRDS
6 - DELET RRDS

Appertaining Output Division:

 - -O; FILE RRDS ADD NEU; SATZ 100
 - FILE RRDS UPDATE; SATZ 100

CPG2 Programmer’s
Reference Manual

Page 217

Example 6: ESDS file 8025

 - OPTIONS TIT ESDS#-#SAMPLE#PROGRAM PHASE TEST;

 - FILE ESDS

 - -D
 - ARBA 4
 - KEY 4
 - RBAN 9 0

 - -I
 - FILE ESDS
 - 1 100 SATZ

Add a record. After adding the current RBA is made available (relative byte address) in the field CPGKxx (xx
= current No. of the file in the Files Division):

 - -C. EXCPT NEU; * add a record
 - MOVE CPGK01 TO ARBA; * save actual RB A

Direct access. If the key field is alphanumeric, then it must be filled with a numeric field binary (EDIT). With
numeric key the editing is made internally. With the numeric field RBAN a record could be accessed directly
in the example.

 - -C; EDIT KEY
 - KEY CHAIN ESDS

Update:

 - -C; EDIT KEY;
 - KEY CHAIN ESDS
 - IF CPGFRC = ' '; * record found
 - EXCPT ALT
 - END

Sequential read:

 - -C; FILL X'00' KEY; * first RBA, alt ernative : RBAN = 0
 - DO UNTIL CPGFRC = 'EF'
 - KEY READ ESDS
 - END
 - RANDOM ESDS

Appertaining Output Division:

 - -O; FILE ESDS ADD NEU
 - SATZ 100
 - FILE ESDS ALT
 - SATZ 100
 - FIELD KEY

CPG2 Programmer’s
Reference Manual

Page 218

 - RBAN 4 BINAER
10a - ** LRBA 4; * record before
10b - ** 4 '00000064' HEX; * 2. record (with record length 100 Byte)
10c - ** 4 '00001000' HEX; * 41. record with 4K CI-Size

Example 7 : Add in a ESDS file 8030

The possibility is given to page through the ten records added last.

 1 - OPTIONS ROOT PHASE TEST;
 2 - FILE CPGESD
 - -D
 3 - FG 10 * 4
 4 - I 3 0
 5 - KEY 4
 - -I
 6 - FILE CPGESD
 7 - 6 10 SATZ
 - -C
 8 - DO LOOP
 9 - MAPD MAP1
10 - IF CPGMPF='DE'; * key ' Data Entry'
11 - EXCPT; * outpu t on file
12 - CPGK01 CHAIN CPGESD CHECK 99; * look below !
13 - ROLL-BACK FG;
14 - MOVE CPGK01 TO FG(1)
15 - I = 0
16 - ELSE
17 - IF CPGMPF = 'P1'; * key PF1
17 - I = I + 1; * for pagi ng backwards
17 - ELSE
18 - IF CPGMPF = 'P2'; * key PF2
18 - I = I – 1; * for pagi ng forwards
18 - END
 - END
19 - IF I > 0
20 - IF I <= 10
21 - KEY = FG(I)
22 - IF KEY >< ' '
23 - KEY CHAIN CPGESD 99
24 - ENDIF
25 - ENDIF
26 - ENDIF
27 - ENDIF
28 - ENDDO
29 - -O
29 - FILE CPGESD ADD
30 SATZ 10

Explanation of the program section 'NEW RECORD', statements 10-15 and 29,30:

The record, which was read in from the map, is added at the end of the ESDS file.

CPG2 Programmer’s
Reference Manual

Page 219

The CHAIN in statement 12 is executed, so that the record is actually written on the disk; without the CHAIN
the new record would be added at this time only in the storage. With the service function CHECK in the
CHAIN instruction one achieves, that no data are read in.

The array FG stores the RBAs of the last ten added records. With ROLL-BACK the RBAs already saved, are
shifted to the rear (statement 12) of the array. The current RBA is stored in the first element of the RBA
array.

The indicator 99 in the two CHAIN statements is necessary, because the compiler requires either the
specification of an indicator or the query of the Return Code in the internal field CPGFRC.

Example 8 a: Printing in the Line mode 8035

(outdated, today it is solved with CPG4 program ex ternally)

 - OPTIONS PHASE TEST;

 - FILES BILD L86C;

 - FORMS L86C LENGTH 72 ZEILE 10 KANAL 1 Z 35 K 2 Z 70 K 12

 - -C; EXCPT

 - -O; FILE BILD; 550 'BEISPIEL DRUCKER'; 650 'L I N E M O D E '
 - FILE L86C SPACE 3 5 SKIP 01;
 - 30 'FEED BE FORE THE PRINT '
 - 60 'AFTER C HANNEL 01 LINE 10'
 - 90 '3 LINES BEFORE THE PRINT'
 - 120 '5 LINES AFTER THE PRINT.'
 - FILE L86C SPACE 2 1 SKIP 02;
 - 30 'FEED BE FORE THE PRINT '
 - 60 'AFTER C HANNEL 02 LINE 35'
 - 90 '2 LINES BEFORE THE PRINT'
 - 120 '1 LINE AFTER THE PRINT. '
 - FILE L86C SPACE # 2;
 - 120 '2 LINES AFTER THE PRINT '
 - FILE L86C SPACE # 1 SKIP 12;
 - 30 'FEED BE FORE THE PRINT '
 - 60 'AFTER C HANNEL 12 LINE 70'
 - 120 '1 LINE AFTER THE PRINT. '

The LINE mode printer in the program is called L86C. In the forms specification the form length is indicated
as 72 lines. Further channels are declared: the lines 10, 35 and 70 as channels 1, 2 and 12.

The rest of the program explains itself by the text constants in the Output Division.

It is recommendable to code the print output program-externally similar to the external processing of the
screen in-/-output with QSF. Therefore the Lattwein product QTF (Quick Text Facility) is available. (in
CPG4).

With the application of QTF, the entries in the Output Division are omitted completely for the print output.
The list format only has to be entered in the text processing facility QTF instead.

CPG2 Programmer’s
Reference Manual

Page 220

Example 8 b: Printing in the Buffermode

1. With application of QSF:

Pictures, which are described already for the screen in/output in the QSF, can also be output on the printer
without additional expenditure.In addition the instruction MAPP is available, which outputs a map on a freely
selectable online printer.

2. Without application of QSF:

The print out is programmed like a screen output. The file description must have an appropriate entry in this
case. The output is made by the operation EXCPT, which branches to the Output Division; there the output
is to be programmed like a screen output.

Note for the programming in the Buffermode that the print out is optimized. For the 'print out' of a blank line,
at least one blank must be output in this lint.

This rule is always to note, independent whether QSF is used or not.

CPG2 Programmer’s
Reference Manual

Page 221

Example 9: Field editing with EDIT 8040

OPTIONS ROOT PHASE TEST.

FILE KUNDEN

DATA DIVISION;
 BZ 20 * 78; * screen line
 I 3 0; * index
 LAND 3; * country
 ORT 23; * town
 PLZ 5; * postcode
 STADT 35; * address (last li ne)

INPUT DIVISION
 FILE KUNDEN DD

PROCEDURE DIVISION;
 :
 DO UNTIL EC >< ' '
 KEY READ KUNDEN
 IF CPGFRC = 'EF'
 EC = 'EF'; * termination criterium of the loop
 ELSE
 IF LAND = ' '
 EDIT STADT TYPE INLAND; * <== EDIT with type
 ELSE
 EDIT STADT TYPE AUSLAND; * <== EDIT witf type
 ENDIF
 IF WERT < MIN
 I = I + 1
 EDIT BZ(I); * <== indic ated EDIT
 IF I >= 20
 EC = '20'; * termination criterium of the loop
 ENDIF
 ENDIF
 ENDIF
 ENDDO
 MAPO MASKE3
 :

OUTPUT DIVISION
 FIELD BZ; * edit array elements
 FIRMA 30
 STADT 66
 WERT 78 EDITCODE K
 FIELD STADT TYPE INLAND
 PLZ 5
 ORT 29
 FIELD STADT TYPE AUSLAND
 LAND 3
 5 '-'; * separate si gn country/postcode
 PLZ 11
 ORT 35

The example shows the editing of fields via the Output Division. In the Output Division with the key word
FIELD and the field name the preparation regulation is depositted.

CPG2 Programmer’s
Reference Manual

Page 222

Also with arrays processed indicatedly (like here with BZ) only the array name is specified.

If a field shall be edited in different ways, then one operates accordingly in the Procedure Division and in the
Output Division with EDIT types (demonstrated in the example for the field STADT).

The field STADT contains the last line of the address, differently edited for inland and foreign addresses, for
example

52477 Düren for inland, but
 A - 1050 Wien for foreign country

Example 10: READ-BACK 8045

READ-BACK KDNR SHORT NA ME DD.MM.YY

 1 - OPTIONS ROOT PHASE TEST
 - TITEL READ-BACK
 - END
 2 - FILE KUNDEN
 - -D
 3 - PAGE 20 * 70
 - -I
 4 - FILE KUNDEN DD
 - -C
 5 - FILL '9' TO KDNR
 6 - DO LOOP
 7 - KDNR READB-PAGE KUNDEN PAGE
 8 - MAPD BILD
 9 - END
10 - -O
11 - FIELD PAGE
12 - KDNR 7
13 - NAME 33
14 - ORT 55

 Mapname : BILD
 ======================

 FELD A F E EC C B ATTFLD ALT.E

 PAGE P

Explanations:

3 An array with the name PAGE is defined. The array consists of 20 fields with a length of 70 bytes

each. It is to take a screen page with 20 lines.

5 The field KDNR is filled with the value '9999999'. It is assumed that on the file KUNDEN a record

with the key '9999999' exists. Prerequisite for the instruction READ-BACK is, that the key field
contains an existing key value.

6 From the file 'KUNDEN' as many records are read, as the array entered in the result field contains.

The page elements will be stored in the array PAGE.

CPG2 Programmer’s
Reference Manual

Page 223

The file KUNDEN will be processed backwards by the instruction READ-BACK. The first read record
is that, whose key is equal to the contents of the field KDNR.

Subsequently, the PAGE in the QSF map BILD is output; after the display the PAGE is filled again
with data from the file KUNDEN, these again displayed etc..

11 Each line of the screen page is edited as described in line 7. The editing is initiated here by the

operation READ-BACK.

12 The field KDNR is output in position 1 to 7 of all elements of the array.
13 Similarly the fields NAME and ORT are output on the positions 33 and 35

14 of the array elements with their last byte.

Example 11: Update VSAM variable record length 8050

1. Possibility: The length of the output record will be fixed by the highest output position in the Output

Division.

 1 - OPTIONS PHASE TEST;
 2 - FILE DATEI
 3 - -I; FILE DATEI; 1 10 KEY

 4 - -C; :
10 - KEY CHAIN DATEI
11 - ON PF1 EXCPT LG50
12 - ON PF2 EXCPT LG100

50 - -O; FILE DATEI ALG LG50; 50 'RECORD LENGTH 50'
51 - FILE DATEI ALG LG100; 100 'RECORD LENGTH 100'

Explanations:

10 With the instruction CHAIN the file DATEI is accessed.

11 Controlled by program function keys, which are read in from the screen,
12 records with variable record lengths shall be updated on the file DATEI. With PF1 the output record

should be 50, with PF2 100 bytes long.

50 This type of processing is only possible, if the key word ALG is indi-
51 cated in the file specification of the Output Division.

Additionally the file description in the File Division (or a program external description) must contain
the entry for variable record length.

2. Possibility : The length of the output record will be fixed by the contents of the internal field
CPGVRL.

 4 - -C; :
10 - KEY CHAIN DATEI
11 - ON PF1 CPGVRL = 50
12 - ON PF2 CPGVRL = 100

50 - -O; FILE DATEI ALG VARIABEL
51 - CPGVRL 50 EDIT Z
52 - 46 'Satzlaenge'

CPG2 Programmer’s
Reference Manual

Page 224

Explanation:

50 For this type of processing the keyword VAR must be coded additionally to ALG in the record
specification.

Example 12: Cursor Stop (example is outdated!) 8051

1 - OPTIONS TIT CURSOR-STOP PHA TEST;
2 - FILE BILD
3 - -I; FILE BILD; 114 118 EIN1; 214 218 EIN2; 314 318 EIN3

4 - -C; DO LOOP; EREAD BILD; END

5 - -O; FILE BILD; 110 '1. EINGABE'; EIN1 118 ATTR A CURSOR
6 - 210 '2. EINGABE'; EIN2 218 ATTR A
7 - 310 '3. EINGABE'; EIN3 318 ATTR A
8 - 319 ATTRIBUT 0

Explanations:

8 A place behind the last input the screen attribute '0' (zero) is output.

The cursor branches one place to the right after the third input and the keybord is blocked for further inputs.

With the jump key the cursor can be set into an input field, in order to correct an incorrect input.

By the cursor stop it is prevented that by erroneous pressing of a key the first screen fields are overwritten.

Example 13: Temporary Storage Queuing 8060

 1 - OPTIONS PHA TEST;
 2 - FILE STOR UPD QUEUE FIX 80 INDEPENDENT STORAG E
 3 - -D
 4 - PAGE 16 * 78
 5 - I 3 0
 6 - -I
 7 - FILE STOR
 8 - 1 78 ZEILE
 9 - -C
10 - DO 16 TIMES WITH I
11 - I READ STOR
12 - IF CPGFRC = 'EF';
13 - BREAK
14 - ELSE
15 - PAGE(I) = ZEILE
16 - END
17 - END
18 - MAPD BILD
19 - PURGE STOR
20 - DO 16 TIMES WITH I
21 - ZEILE = PAGE(I)
22 - EXCPT

CPG2 Programmer’s
Reference Manual

Page 225

23 - ENDDO
24 - EXITI 'TEST'
25 - -O
26 - FILE STOR ADD
27 - ZEILE 78

 Mapname : BILD
 ======================

 FIELD A F E EC C B ATTFLD ALT.E

 PAGE P

Explanations:

The example shows the processing of a Temporary Storage Queue.

2 File description for Temporary Storage Queuing. The keyword UPD means, that the Storage area is

used both for in- and for output. The entry QUEUE is necessary for Temporary Storage Queuing.
The record length is fixed (FIX) and 80 places large. INDependent means, that the area is screen
independent, thus for all screens available. The entry STORAGE defines the file as TS-area.

All entries should be input however not in the program, but in the Data Dictionary file.

10 With the DO operation a loop is begun, with which an index I is increased in each case by 1. The

loop is passed through 16 times.

With the index I the Temporary Storage Queue STOR is read; the access takes place here
(differently than with other file accesses) directly on the record with the serial number I.

In order to read with the next READ the following record, the index must be increased in each case
by 1 (to which the DO loop is used here). However, it would be possible to execute the following
READs without declaration of a key field - thereby also without increase of the index field the next
record would be read in each case.

12 In CPGFRC 'EF' is stored, if the end of the Storage area is achieved. 'EF' is also set, if with the

READ operation no Storage is found.

15 The DO-LOOP is passed through up to its end only if End of File is not set. Otherwise the BREAK

terminates the DO-loop.

19 With the operation PURGE the Storage area STOR is deleted.

22 Output of a record into the Storage area (see also 23).

23 With the operation EXITI the same program (TEST) is started again. This way can be taken in place

of a DO loop, which covers the whole program, in order to achieve, that before the renewed
execution all fields of the program are initialized on zero or blank.

26 The entry ADD means, that records are added at the rear end of the area.

CPG2 Programmer’s
Reference Manual

Page 226

Example 14: Variable Cursor position, e.g. with err or message 8065

 :

 - PROCEDURE DIVISION;
 - IF ERROR = '**'
 - CPGMCU = 'KDNR '
 - END
 - MAPD MASKE
 :

Explanations:

The example shows the principle of the variable positioning of the cursor in a map designed with QSF.

For cursor positioning the CPG internal field CPGMCU is available. It is 6 bytes large and alphanumerical.

With the assignnment operation the name of the field is transferred into the field CPGMCU,into which the
cursor is set for the next output. The field name is transferred thereby as literal in inverted commas.

If the field CPGMCU is not filled, then the cursor is positioned, where it was indicated in the description of
the map.

Pay attention, that the field CPGMCU is deleted after each screen output; if in a program several screen
outputs are available, then the programmer must guarantee, that at present of a MAP-output-operation the
field CPGMCU is filled 'correctly'.

If the field, into which the cursor is to be set, is an array, then the index of the desired element can be
assigned to the field CPGMCI (three places numeric, no decimal places).

Examples for the operation FIND: 8070

The application of the operation FIND presupposes that a table was created, which during the first execution
of the operation FIND is loaded into the main storage.

In the following examples for the FIND operation it is presupposed, that such a table is generated; it has the
following structure:

Column 1 - 6 order number
Column 7 - 12 order date
Column 13 - 19 customer number
Column 20 - 29 article number
Column 30 - 31 representative number
Column 32 - 34 category of commodities

The table size is thus 34, the 'key length' 10, because each element can be key and the article number with
10 bytes is the longest possible key.

CPG2 Programmer’s
Reference Manual

Page 227

Example 15: RNDOM during the table processing

 :
20 - AUFTNR FIND VIEW
 - IF CONDITION NOT EOF
21 - EXSR UP01
 - ENDIF
22 - RANDOM VIEW
23 - ARTNR FIND VIEW
 :

20 The table is looked up for an order number. If this is not found, then the switch EF is set. The following

FIND starts the next look up of the view at its first element. If the order number is however found in
the table, then with the following FIND the look up will be restarted place of the table.

22 In this case a RANDOM VIEW is necessary, in order to set the internal pointer on to the first element

of the View.

Example 16: Display of a table for selective crite rion 8071

Exactly the orders are to be displayed, which are assigned to a certain representative.

 1 - FILE VIEW INP FIX 34 10 TABLE
 2 - -D
 3 - PAGE 20 * 78
 4 - I 3 0
 5 - -I;
 6 - FILE VIEW
 7 - 1 6 AUFTNR
 8 - 7 12 0 DATUM
 9 - 13 19 KDNR
10 - 20 29 ARTNR
11 - 30 31 VNR
12 - 32 34 WGRP
13 - -C; DO LOOP
14 - MAPD EINLESEN
15 - DO 20 TIMES WITH I
16 - VNR FIND VIEW
17 - IF CPGFRC = 'EF'
18 - BREAK
19 - ELSE
20 - EDIT PAGE(I)
21 - ENDIF
22 - ENDDO
23 - MAPD ANZEIGE
24 - END
25 - -O
26 - FIELD PAGE
27 - AUFTNR 6
28 - DATUM 16 EDITCODE Y
29 - KDNR 30
30 - ARTNR 76

CPG2 Programmer’s
Reference Manual

Page 228

Explanations:

 1 and 6 - 12. Description of the Data View. The description of the View and its structure should be
made however not in the program, but in the Data Dictionary.

14 Reading of a representative number (VNR)

The table is looked up for the entered representative number.If the number is found, then the
appropriate table elements are read in. With the next passing through of the loop beginning with the
following table element, the rest of the table is looked up. With FIND the table can be passed
through sequentially until its end.

20 The elements of the PAGE are edited only with fields, which were found in the table.

23 The filled screen page PAGE will be edited in the map ANZEIGE.

CPG2 Programmer’s
Reference Manual

Page 229

Example 17: Orders display 8072

Orders display, additional information such as plain texts of customers and articles from files attracting.

 1 - FILE VIEW
 2 - FILE KUNDEN
 3 - FILE ARTSTA
 - -D;
 4 - FEHLER 26
 5 - I 3 0
 6 - PAGE 20 * 78
 - -I
 7 - FILE VIEW DD
 8 - FILE KUNDEN
 - 37 61 KUNDE
 9 - FILE ARTSTA
 - 21 45 ARTIKL
 - -C
10 :
11 - AUFTNR FIND VIEW
12 - IF CPGFRC = 'EF'
13 - EXSR FEHLER
14 - ELSE
15 - KDNR CHAIN KUNDEN
16 - IF CPGFRC = ' '
17 - ARTNR CHAIN ARTSTA
18 - IF CPGFRC = 'NF'
19 - FEHLER = 'Article not found'
20 - END
21 - ELSE
22 - FEHLER = 'Customer not found'
23 - END
24 - END
 :
25 - EDIT PAGE(I)
 :

26 - FIELD PAGE
27 - AUFTNR 6
28 - DATUM 16 EDIT Y
29 - ARTIKL 44
30 - KUNDE 72

Explanations:

 1 Description of the data view and its structure is taken from the Data
 7 Dictionary (values as in the example before)

11 The table is sequenced according to order numbers. With the instruction FIND it is possible to

access an order in the table directly. If the FIND instruction is situated in a loop, then (from a
specified order on) all table elements are read in.

15 With the customer number found in the table one accesses the customer file, to read in the name of

the customer as plain text. A prerequisite is however, that the table element KDNR corresponds to
the key field of the file KUNDEN; this is to be considered when generating the data view.

CPG2 Programmer’s
Reference Manual

Page 230

17 With the article number found in the table one accesses on the article file, in order to read in the
article description as plain text. A prerequisite is however, that the table element ARTNR corresponds to the
key field of the file ARTSTA; this is to be considered when generating the data view.

26 The page will be edited both with values from the table and with additional informations, which are

supplied by file accesses.

Example 18: Variable map name 8075

For making the MAP instruction flexible the variable map name is available. In this context not only the name
of the map can be handled variable, but also the deletion of the screen before the output, the Write Control
Character and the minimization of the data communication with remote screens.

The syntax and some processing examples with variable map names are described in the following:

The interface to the QSF is a 16-places alpha field; in the first eight places it contains the map name, in the
ninth the information about the deletion of the screen; the tenth place contains the WCC and in the eleventh
the transfer of the constants can be suppressed; the remaining five places are at present still reserve bytes.
For example such a field can be described in the Data Division as overlay.

 - -D.
 - MAPNAM 8; * mask name
 - ERASE 1; * delete screen before the mask output ?
 - WCC 1; * Write Control Character
 - OCTL 1; * output only variable fie lds ?
 - FLDCLR 1; * delete map fields or var iable attributes in
 - * the programn ? (= no map -Input/-Output)
 - ORG MAPNAM; * redefine of the memory f rom MAPNAM
 - MAPCTL 16; * 16-places map Control-fi eld for variable
 - * map processing
 - DRUC 4

Example:

The map BUCH01 is to be output. Before the output the screen is to be deleted, with the output the horn
shall beep. Subsequently, (controled by the key PF11) this map shall be output on the printer DR01:

 - -C; MAP = 'BUCH01 '
 - ERASE = 'Y'; * Erase in any c ase
 - WCC = 'H'; * Output with ho rn
 - DRUC = 'DR01' * give printer n ame
 - MAPO-VAR MAPCTL
 - ON PF11 DRUC MAPP-VAR MAPCTL

The variable map name is supported for all MAP operations.

With the use of the variable map name the programmer is responsible for the fact, that the 16-places field is
filled with meaningful values. A map name must always be indicated; the remaining information bytes are
optional to fill; if they remain empty, then the information indicated in the QSF is taken, otherwise it is
overwritten.

CPG2 Programmer’s
Reference Manual

Page 231

Example 19: TWA-SAVE and TWA-LOAD 8080

The two operations TWASV and TWALD facilitate the buffering of data. A typical application: In transaction
oriented programs it is possible with the help of these operations to transfer data to a following transaction,
which is not buffered on the screen.

 :
 - -C;
 - TWA-LOAD BSP1
 - MAP BEISPIEL
 :
 : * Processing of the data read in. Not all d ata, needed for the
 : * further processing, is contained in the ma p Beispiel.
 :
 - MAPO BEISPIEL
 - TWA-SAVE BSP1
 - EXITT 'BSP1'

The transaction in this example calls itself again and again. At the beginning of the program the entire TWA
of the previous transaction is loaded. Thus the program also knows the data, which were not transferred
over the screen. Prerequisite is, that the TWA was saved before leaving the the program with TWA-SAVE
under the same name (here: BSP1).

TWA-SAVE and TWA-LOAD can be used only in such programs,which call themselves.

Example 20: Reading of files with record length gr eater 8K 8090

Files with record lengths greater 8 K can be read from variable input positions in connection with the CPG
internal field CPGFIS.

The variable processing of the input positions is achieved in the record determination of the Input Division by
the parameter VAR, the shifting factor is maintained in the Procedure Division in the internal field CPGFIS
(numeric with 5 digits).

 - OPTIONS PHASE TEST;
 - FILE BIGFILE INP FIX 9999 10 KSDS
 - FILE BIGFIL2 INP FIX 9999 10 KSDS

 - -I.
 - FILE BIGFILE;
 - 15 24 F0
 - 1001 1010 F1000
 - FILE BIGFILE VAR
 - 1 35 F10000
 - -C;
 :
 - CPGFIS = 10000
 - ' ' READ BIGFILE
 :

CPG2 Programmer’s
Reference Manual

Page 232

It is assumed here that the file BIGFILE is 12,000 bytes large.

The fields F0 and F1000 are read in conventional way. For reading the informations from place 10001 to
100035 the shifting factor is needed; in the program it is set by CPGFIS = 10000. The shifting of the Input
Divisions is only possible, because the keyword VAR was attached to the record determination of the Input
Division.

Example 21a: Program for the file maintenance, co nversational

(outdated with switches and GOTO branches) 8101

 1 - OPTIONS TITEL file#maintenance#dialog PHA TES T;

 2 - FILE CPGWRK

 3 - -D; PAGE 20 * 78; I 3 0;

 4 - -I; FILE CPGWRK DD

 5 - -C;
 6 - A100
 7 - MAPD MASKE1
 8 - ON P1 GOTO A300
 9 - A200; * show file s equentially
10 - DO 20 TIMES WITH I
11 - KEY READ CPGWRK
12 - ON EF GOTO A250
13 - EDIT PAGE(I)
14 - ENDDO
15 - KEY READ CPGWRK
16 - A250;
17 - RANDOM CPGWRK
18 - MAPD MASKE2
19 - IF CON P2; GOTO A100
20 - ELSE; GOTO A200
21 - ENDIF
22 - A300; * Modify/add/ delete data records
23 -
24 - KEY CHAIN CPGWRK 50
25 - MAPD MASKE3
26 - EXCPT
27 - GOTO A100

28 - -O; FILE CPGWRK DD ON DE AND NOT 50
29 - FILE CPGWRK DD ADD ON DE AND 50
30 - FILE CPGWRK DEL ON P1 AND NOT 50

31 - FIELD PAGE; KEY 14
32 - SATZ1 78

The program starts with a screen dialog with map MASKE1. The key of a file can be input. With the function
key PF1 one branches out to the program section 'file to maintain', which begins with the label A300;
otherwise the file will be read sequentially and 20 records are displayed page wise.

CPG2 Programmer’s
Reference Manual

Page 233

Consider (statement 15 and 17):

Before the map dialog with map MASKE2 (display of a page with 20 data records) the access to the file
should be released, more exactly the VSAM-strings. Therefore a further record is read and a RANDOM for
the file CPGWRK is given.

More details of such programming techniques are presented in our programmers trainings.

Example 21b: Program for the file maintenance, pseu do Conv. 8110

Following program is identical to the user to the program in section 21a. The advantage is, that in the time,
in which the user processes a screen, no task is active. After a MAPO the task will be terminated in each
case. Only when pressing a program function key, the subsequent task is started. That is provided by the
instruction EXITT (see statement 57).

 1 - OPTIONS TITEL File#maintenance#task ROOT PHAS E TEST;

 2 - FILE CPGWRK
 3 - FILE TSQ; * Storage

 - -D;
 4 - I 3 0
 5 - PAGE 20 * 78

 - -I;
 6 - FILE CPGWRK DD
 7 - FILE TSQ DD; * Place 1: KZ
 * Places 2 - 1 5: KEY
 - -C.
 8 - IF CPGMPF = 'CL'; * Deletion key = Program end
 9 - PURGE TSQ; * Delete Stora ge
10 - MAPO ENDE;
11 - ELSE; * Execute prog ram
12 - 1 READ TSQ; * Read Storage
13 - EVALUATE; * One of the f ollowing alternatives
 - *-----------------------*
14 - WHEN CPGMPF = 'P2' OR; * if PF2 was p ressed or
15 - WHEN KZ = ' '; * if first cal l
16 - KZ = '1';
17 - MAPO MASKE1; * Key-Input ma p
 - *-----------------------*
18 - WHEN CPGMPF = 'DE' AND; * if DE was pr essed
19 - WHEN KZ = '1'; * and not firs t call
20 - MAP MASKE1;
21 - DO WHILE I < 20 AND; * Page is not yet full and
22 - WHILE CPGFRC = ' '; * End of Fil e was not reached
23 - KEY READ CPGWRK
24 - IF CPGFRC = 'EF'
25 - KZ = ' '
26 - ELSE
27 - I = I + 1
28 - EDIT PAGE(I)
29 - ENDIF
30 - ENDDO
31 - IF CPGFRC = ' '
32 KEY READ CPGWRK; * Start-KEY fo r the following task
33 - ENDIF

CPG2 Programmer’s
Reference Manual

Page 234

34 - MAPO MASKE2; * Sequential n otification
 - *-----------------------*

 - * Modify/add/d elete data records
 - *
35 - WHEN KZ = '1'; * Step 1: I ndicate and modify
 - * o n the screen
36 - MAP MASKE1; * KEY read f rom the screen
37 - KEY CHAIN CPGWRK; * Read recor d from the file
38 - MAPO MASKE3; * Indicate r ecord (and modify)
39 - KZ = '2'
 - *-----------------------*
40 - WHEN KZ = '2'; * Step 2: M odify on file
41 - KEY CHAIN CPGWRK; * Read recor d
42 - MAP MASKE3; * Modified r ecord from the screen
43 - IF CPGMPF = 'P1'; * PF1 was pres sed for delete
44 - IF CPGFRC = ' '; * Record found
45 - EXCPT WRK-DELETE
46 - END
47 - ELSE
48 - IF CPGFRC = ' '; * Record found
49 - EXCPT WRK-MODIFY
50 - ELSE; * Record was n ot found
51 - EXCPT WRK-ADD
52 - ENDIF
53 - ENDIF
54 - MAPO MASKE1
55 - MOVE '1' KZ; * Next Step: I ndicate
 - *-----------------------*
56 - END-EVALUATE
57 - EXCPT TS. * Describe Sto rage
58 - EXITT 'TEST'; * Task calls i tsself
59 - ENDIF; * Query CLEAR- Key

 - -O;
60 - FILE CPGWRK DD WRK-MODIFY
61 - FILE CPGWRK DD ADD WRK-ADD
62 - FILE CPGWRK DEL WRK-DELETE
63 - FILE TSQ DD TS
64 - FIELD PAGE
65 - KEY 14
66 - SATZ1 78

Explanations:

3 The data are stored in the Temporary Storage area TSQ. Here only the fields KZ and KEY are

transferred to the subsequent task. 15 is indicated therefore in the Data Dictionary as record length of
TSQ. If the application is still to be developed, one designate a (generous) reserve during the first
description, so that the area can be increased during the development without problems. A Q for
Queueing is standard today.

8 The programmer is responsible for the termination of the program with transaction oriented

programming. Task oriented programs should therefore always begin with the query of the program
function key for program termination (or other termination criterias).

9 With program end the used buffers usually are deleted. The instruction PURGE deletes the entire

queue.

At the end of the processing is a map, in which (at least) the TransId of the subsequent program can
be entered.

CPG2 Programmer’s
Reference Manual

Page 235

12 Usually, the storage is read first. Here it contains the sign KZ, which states, in which processing step
the program is. Additionally it contains the KEY processed last.

13 EVALUATE ensures that only exactly one of the following alternatives is executed. The individual

alternatives are described with WHEN (see 14, 18, 34, 39), END EVALUATE (see 55) terminates the
instruction.

Example 22a: Convert fields with CONVERT 8120

In the following a program extraction is represented, which describes the different possibilities of the
operation CONVERT exemplarily:

 Statement Field c ontents F1 F2
 ----------------------------------- ------- ------- ---- --------

 1 - MOVE 'Test' TO F1 Test

 2 - CONVERT F1 LOW test

 3 - CONVERT F1 TEST

 4 - CONVERT F1 INTO F2 HEX TEST E3C5E2E3

 5 - FILL '*' F1 **** E3C5E2E3

 6 - CONVERT F2 INTO F1 CHARACTER TEST E3C5E2E3

 7 - CONVERT F2 INTO F2 CHAR TEST TESTE2E3

 8 - MOVE 'F0F0' F1 F0F0 TESTE2E3

 9 - CONVERT F1 INTO F2 CHAR F0F0 00STE2E3

Concerning 2: Basically applies: Characters, which cannot be converted in the sense of the operation,
remain unmodified.

In the example: All bytes of the field shall be modified in lowercase letters. The only uppercase letter is 'T',
all other characters remain unchanged; if there are digits in the field, they also rest unchanged.

During the conversion from Hex- into character format, the programmer must guarantee however, that the
origin field contains valid values, . i.e. values between '00' and 'FF'. Other values are converted in this
case to X'00'.

To 7 and 9: Basically applies: The result field is not deleted before the operation.

The result of the conversion will be left justified in the result field.

CPG2 Programmer’s
Reference Manual

Page 236

Example 22b: Converting of time informations with C ONVERT 8125

CONVERT for date fields, examples:

 Statement ALFA6 A LFA8 ALFA10
 --------------------------------- ------ - ------- ----------

 1 - MOVE '220193' ALFA6 220193

 2 - CONVERT ALFA6 DATE 930122

 3 - CONVERT ALFA6 INTO ALFA8 DATUM " 2 20193

 4 - MOVE '2001' ALFA8 " 2 2012001

 5 - CONVERT ALFA8 DATE " 2 0010122

 6 - ALPHA8 = '23.02.93' " 2 3.02.93

 7 - CONVERT ALFA8 DATE " 9 3.02.23

 8 - CONVERT ALFA8 INTO ALFA10 DAT " " 23.02.93

 9 - MOVE '1999' TO ALFA10 " " 23.02.1999

10 - CONVERT ALFA10 DATE " " 1999.02.23

11 - CONVERT ISO8 INTO ALFA10 UDATE-FORMAT

Concerning 5: Here we see, that in some cases the data of the origin field

can not be interpreted clearly. For these cases the service function YEAR is available, which
assumes with the converting that the year is located in front (left) in the data field.

Additionally the converting of date is supported for six to eight digit numeric fields. An exception of the rule
that alphanumeric fields are always converted into alphanumeric and numeric fields into numeric, is the
CONVERT with the service UDAte:

11 - CONVERT ISO8 INTO ALFA10 UDATE-FORMAT

Here the eight-digit numeric field ISO8 (19960109) is stored convertedly into an alpha field and edited
correspondly to the UDATE-format (09.01.1996).

CONVERT for time fields:

 Statement NUM5 NUM5C NUM70
 --------------------------------- ----- ----- -------

11 - NUM5 = 10000 10000

12 - CONVERT NUM5 INTO NUM5C SECONDS 10000 03600

13 - NUM5 = 90000 + NUM5C 93600 "

14 - CONVERT NUM5 INTO NUM70 SECS " " 0034560

15 - CONVERT NUM70 INTO NUM5C TIME " 93600

CPG2 Programmer’s
Reference Manual

Page 237

Concerning 12: The converting of 10000 (HMMSS, thus 1:00:00, that means 1 hour) in seconds

results in 3.600.

Concerning 14: The converting of 9 o'clock and 36 minutes results in 34.560 seconds.

Concerning 15: The converting of 34.560 seconds results in 9 hours an 36 minutes.

Example 23: Storing in the Common Area (CPGCOM) 8130

CPGCOM offers the possibility of storing data in the Common Area. This form of the storing is used for
communication with other programming languages and tools.

CPGCOM does not need to be defined by the programmer as a field. Max. 4080 bytes data can be
transferred. CPGCOM is processed with the instruction EDIT and SELECT.

 - OPTIONS PHASE PROGCPG;
 - -I;
 - FIELD CPGCOM;
 - * 1 8 DATUM; * Eight digit date
 - 9 18 WTAG; * Day of the week text in clear
 - 19 20 KW; * Calendar we ek
 - -C;
 - DATUM = CPGDAT; * Fill parame ter
 - EDIT CPGCOM; * Supply Comm on Area
 - EXPR DRCOBOL; * LINK in the COBOL-Date routine
 - SELECT CPGCOM; * Read result s from CPGCOM
 - IF WTAG = 'SATURDAY' OR
 - IF WTAG = 'SUNDAY'
 - :

 - -O;
 - FIELD CPGCOM
 - DATUM 8

A CPG program PROGCPG uses here an existing date routine. The routine expects the input parameter in
the places 1 to 8 of the Common Area, the result is transferred in the places 9 to 18 or in the places 19 and
20 of the Common Area.

Field edits can be differentiated also according to types. If for example a CPG program communicates with
several Cobol programs, then the field CPGCOM can contain different informations. With the keyword TYPE
direct editings can be addressed.

Example:

 - -C; EDIT CPGCOM TYPE PROG1

 - -O; FIELD CPGCOM TYPE PROG1
 - ALFA20 20
 - FIELD CPGCOM TYPE PROG2
 - DATUMV 4 PACKED
 - TEXT 16
 - DATUMB 20 PACKED

CPG2 Programmer’s
Reference Manual

Page 238

The length of the Common AREA can be set to a desired value, if for example the called program requires
this.

In addition a numeric field in front of the EXPR instruction is to be filled accordingly.

 - CAL = 750; * Common Area length: 750 Bytes
 - EDIT CPGCOM; * Editing of the Common Area
 - CAL EXPR PROGRM3; * Call of the sub program

Example 24: Sequential processing of record types (segments) 8140

Both VSAM files and HL1 structures can have different structures in their records.

In the following example you can see, how such a file can be processed during the input.

OPTIONS PHASE TST000 TITEL Segment-Verarbeitung;
*
FILE AUFTRAG
*
INPUT DIVISION
 FILE AUFTRAG
 1 2 SA
 SEGMENT KOPF DD TYPE 01 REFERENCE AUFTR AG
 SEGMENT POSTEN DD TYPE 02 REFERENCE AUFTR AG
 SEGMENT TEXT DD TYPE 03 REFERENCE AUFTR AG
*
PROCEDURE DIVISION
 DO WHILE CPGFRC = ' '
 READ AUFTRAG
 IF CPGFRC >< 'EF'
 EVALUATE
 WHEN SA = '01'
 READI AUFTRAG SEGMENT KOPF
 WHEN SA = '02'
 READI AUFTRAG SEGMENT POSTEN
 WHEN SA = '03'
 READI AUFTRAG SEGMENT TEXT
 END-EVALUATE
 :
 : Verarbeitung
 :
 ENDIF
 ENDDO

Note:

The segments must be described in the Input Division directly following the appropriate file.

Description:

During the sequential reading the record type is always read in first. Depending on the read record type, the
same data record is read in again with the operation code READI thereafter.

CPG2 Programmer’s
Reference Manual

Page 239

In the Data Dictionary the file AUFTRAG is described with the record types 01, 02 and 03. In order to be
able to address these different structures directly in the program, they get segment names, in this case
KOPF, POSTEN and TEXT.

By the entry REFerence, a reference is made for the segment names to the record types of the file
AUFTRAG in the Data Dictionary.

In the Procedure Division the desired record type of the file is then addressed, by indicating the key word
SEGMent and a segment name with the READI operation in addition to the file name.

Example 25: Direct processing of record types with segments 8145

Direct processing of segments is supported only with the instruction CHAIN in connection with the key word
UPDate.

Note: CHAIN for updates locks a record or a whole data-CI up to the following update. If no update is

made, then a RANDOM must be programmed.

OPTIONS PHASE TSTXXX TITEL Segment Processing;
*
FILE BESTELL
*
INPUT DIVISION
 FILE BESTELL
 1 2 SA
 SEGMENT SATZ1
 11 17 NFNR
*
PROCEDURE DIVISION
 :
 KEY CHAIN BESTELL UPDATE
 IF CPGFRC = ' '; * found !
 EVALUATE
 WHEN SA = '01'; * next free o rder number
 READI BESTELL SEGMENT SATZ1
 NFNR = NFNR + 1;
 EXCPT ERSTER-SATZ
 NFNR = NFNR - 1
 WHEN SA = '02'; * 'normal dat a record'
 EXCPT AENDERUNG
 END-EVALUATE
 ELSE
 EXCPT NEU
 ENDIF
 :

Description:

In a transaction oriented program modified data are available for updating or adding for the file. In the first
record of the file (for the case of the new installation) the next free number is for the key editing.

The following problem results:

For CHAIN only one input description is available. However two different functions are to be executed,
depending on the accessed key.

CPG2 Programmer’s
Reference Manual

Page 240

1. Update: The CHAIN may not read file data, because these would overwrite the data to be updated.
2. Determine the record number for later adding. Here data must be read in, however only the record

number.

Way out: Use of segments!

In the program above with the CHAIN basically only the record type is read in. If record type '01' is found,
then the next free number is read in with READI, then counted up and updated again. For the READI a
segment is always indicated. This is described in the Input Division under the file and contains the input
specifications for further data of the last read record. With record type '02' a valid key is found, no data is
read, but an update is made.

Example 26: Logically connected IF queries 8150

For the logical connection of IF and WHEN queries there are different syntax rules.

options root phase TSTxxx * Source Code in up per/lower case letters
 titel Demo#IF#AND#/#OR
 end
file stor
-d
 feld1 8
 feld2 8
 meld 24
-i
 file stor dd
-c
 if cpgmpf = 'CL' or; * PF-Key CLEAR
 if cpgmpf = 'PC' or; * PF-Key PF12
 if cpgmpf = 'QC'; * PF-Key PF24
 exhm aexit; * general EXIT-rout ine
 else
 1 read stor
 map BSP026
 if feld1 > ' ' and; * Wrong input, if both fields are filled
 feld2 > ' ' or; * or if field1 is empty and field2 begins
 feld1 = ' ' and; * with a '$'.
 feld2 = '$';
 meld = 'Falsche Eingabe !'
 cpgmcu = 'FELD1'; * Cursor positioni ng
 else
 exhm absp26; * Processing
 end
 mapo BSP026
 exitt 'BS26'
 endif

Rules for logically connected IF or WHEN queries:

• To a group of logically connected queries belongs (only) one ENDIF, WHEN does not have an

appropriate END.

• Starting from the second query the IF or WHEN can be coded (like above with the CPGMPF QUERY) or

be omitted (as with the query of FELD1 and FELD2).

• Brackets are not possible. Clarity of the query is given by the rule 'AND binds more strongly than OR'

(comparably with the known rule 'point calculation is higher than line calculation').

CPG2 Programmer’s
Reference Manual

Page 241

Example 27: Upper and lower case printing in

pseudo conversational application 8160

The following example shows, how the translation in uppercase letters is deactivated, the original UCTRN
status saved and being restored at the program end. (UCTRN stands for Upper Case translation and is a
parameter of the Terminal Control Table of the CICS).

 1 OPTIONS ROOT PHASE TST031;
 2 FILE STOR UPD QUE FIX 1 STORAGE; * Storing the UCTRAN-status

 -I;
 3 FILE KANAL HS
 4 1 1 STATUS;
 5 FILE STOR DD
 -C;
 6 1 READ STOR; * UCTRN-Statu s at program-start
 7 IF CPGMPF = 'CL'; * Delete key
 8 EXHM PENDE KANAL T; * UCTRN turn back
 9 PURGE STOR; * Delete Stor age
 10 MAPO ENDE
 11 ELSE
 12 IF CPGFRC = 'EF'; * If first pr ogram call
 13 EXHM PSTART KANAL; * UCTRN-Statu s determine/save
 14 ENDIF
 15 MAP TEST LOW; * Service 'LO W', the MAP instruction
 : * does not tr anslate in uppercase
 : * letters
 17 MAPO TEST
 18 UPDAT STOR; * Storing the UCTRAN status
 19 EXITT 'TT31'
 20 ENDIF

Explanations:

Concerning 8: Service function 'T' for EXHM in transaction oriented programs:

If in a dialog oriented program the CLEAR key is used, the program automatically branches to the end. In
transaction oriented programs the way to the program end is determined by the programmer, the automatic
program termination therefore might not be appropriated.

The operation EXHM checks during the return branch to the calling program, whether the CLEAR key is
pressed and branches then to the end of the program. This automatism can be switched off in transaction
oriented programs by the service function 'Task'.

Concerning 15: Not only CICS knows the translation in uppercase letters with the screen input. Also CPG
translates according to the standard in uppercase letters. This translation of the CPG is switched off with the
service function LOW in the MAP operation.

The following HL1 module receives the UCTRAN status of the CICS by using the operation COMRG.

CPG2 Programmer’s
Reference Manual

Page 242

OPTIONS PHASE PSTART;
-D;
 STATUS 1; * Data channe l
 ------------ ------------------
 SYSINF 32; * COMRG-area, must be 32-places alpha
 ORG SYSINF; *
 DUMMY1 21; *
 UCTALT 1; * Place 22, U CTRN up to CPG 2.0
 DUMMY2 4; *
 UCTR 1; * Place 27, e xpanded UCTRN
information
 ORG; * End of the redefinition
-C;
 COMRG SYSINF; * Finds out t he UCTRAN-status
 UCTRN OFF; * Basicly: UC TRN OFF
 * ----------- ------------------*
 IF UCTR >< UCTALT AND; * Place 27 wi th COMRG will be
 IF UCTR >< 'T'; * filled from CICS 2.2. Therefore
 UCTR = UCTALT * the place 2 2 should be con-
 ENDIF * sidered.
 *
 * ----------- ------------------*
 STATUS = UCTR; * Transfer th e UCTRAN-status to
 * the channel field

Explanations:

Since CPG release 2.1 the UCTRN status is in two places in the COMRG area: In place 22 (U or N) and in
place 27 (U, N or T). The entry T is for UCTRN Transaction. Place 27 is filled by the CPG, if a CICS release
2.2 or higher is in use.

The following HL1 module resets the UCTRN status to the status before the call of the program.

OPTIONS PHASE PENDE;
-D;
 STATUS 1;
-C;
 IF STATUS = 'U'; * If the stat us was 'U', then set
 UCTRN ON; * UCTRN on again
 ELSE;
 IF STATUS = 'T'; * If the stat us was 'T', then set
 UCTRN ON TRANSACTION; * UCTRN tra nsaction on again
 ENDIF
 ENDIF

CPG2 Programmer’s
Reference Manual

Page 243

Example B01 : Reader, Printer and overflow control 8600

 1 - OPTIONS BATCH PHASE BSPB01;

 2 - FILE READER INPUT FIX 80 READER
 3 - FILE PRINTER OUTPUT FIX 132 PRINTER

 4 - FORMS PRINTER LENGTH 72 LINE 1 CHANNEL 1 L INE 66 CHANNEL 12

 - -I
 5 - FILE READER
 6 - 1 80 SATZ

 - -C
 7 - EXCPT KOPF
 8 - DO UNTIL CPGFRC >< ' '
 9 - READ READER
10 - IF CPGFRC >< 'EF'
11 - IF CONDITION OF; * Overflow
11 - EXCPT SEITENWECHSEL
11 - ENDIF
12 - EXCPT DATEN
 - ENDIF
13 - ENDDO

 - -O
15 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
16 - 24 'First Page'
17 - UDATE 70
18 - UTIME 80
19 - FILE PRINTER SPACE # 2 SKIP 01 SEITENWECHS EL
20 - 24 'Following Page'
21 - FILE PRINTER SPACE # 1 DATEN
22 - SATZ 80

Explanations:

 1 Option BATch must be indicated for batch programs.

2 A file 'READER' is defined as input file (INPUT). The record length is (FIX) 80 bytes. The unit is
READER (SYSIPT).

3 A printer file 'PRINTER' is defined as output file (OUTPUT). The record length is (FIX) 132 bytes.

The unit is 'PRINTER'. (SYSLST).

4 The forms length is defined here with 72 lines. The first line will be defined with channel 01 and line
66 with channel 12. (Channel 12 describes the line, after which the overflow switch 'OF' is set).

The FORMS entries can be completely omitted. In this case the defaults apply: Channel 01 = line 6,
channel 12 = line 66.

 5 In the Input Division the reading regulation for the file READER is described.

 6 From the READER the places 1 to 80 are read into the field SATZ.

CPG2 Programmer’s
Reference Manual

Page 244

7 Execution of the output. All record specifications not locked with name or switches will be executed
and the output, whose record specification has the name KOPF. Because all outputs are locked, this
works like a direct branch to the output with the name KOPF.

8 Beginning of a loop, which is terminated, if the File Return Code is not blank any more (at End of

File).

 9 The input file 'READER' is read.

10 'End of File' is queried in the File Return Code (EF in CPGFRC).

11 The overflow switch is queried; if it is set, the output SEITENWECHSEL is executed.

12 Execution of the output with the name DATEN.

13 Branches back to the start of the loop (statement 8).

15 This output is addressed with EXCPT KOPF (see 7).

Before printing there is a forms feed to channel 01, that means to the beginning of the next page
(SKIP 01). Before printing no line feed takesplace, after printing two line feeds are made. (SPACE #
2).

16 Output of the heading, date and time.

19 Forms feed to channel 01 before printing, after printing 2 line feeds.

20 Output of a literal.

21 A line feed after output of the field SATZ, if EXCPT DATEN is executed.

Example B02 : Program catalogue CPGWRK 8610

 1 - OPTIONS BATCH TITEL Program catalogue PHASE BSPB02;

 2 - FILE PRINTER
 3 - FILE CPGWRK INPUT

 - -D;
 4 - KEY 14
 5 - STRICH 80

 - -I;
 7 - FILE CPGWRK;
 8 - 1 2 SA
 9 - 3 10 PNAME
10 - 11 14 TRANID
11 - 15 24 PROT
12 - 25 29 0 TWA
13 - 30 49 TEXT
14 - 50 52 PKZ

 - -C;
13 - FILL '-' STRICH
14 - EXCPT 01
15 - MOVEL '01 ' TO KEY
16 - KEY SETLL CPGWRK

CPG2 Programmer’s
Reference Manual

Page 245

17 - DO UNTIL CPGFRC = 'EF'
18 - KEY READ CPGWRK
19 - IF CPGFRC >< 'EF' AND
20 - IF SA <= KEY
21 - EXCPT 02
22 - ENDIF
23 - ENDDO

 - -O;
24 - FILE PRINTER SPACE # 2 SKIP 01 ON 01
25 - 17 'PROGRAM CATALOGUE'
26 - UDATE 70
27 - UTIME 80
28 - FILE PRINTER SPACE # 2 ON 01
29 - STRICH 80
30 - FILE PRINTER SPACE # 2 ON 01
31 - 22 'PROGRAMM TRID TEXT'
32 - 67 'PKZ TWA PROTECTION'
33 - FILE PRINTER SPACE # 1 ON 02
34 - PNAME 8
35 - TRANID 15
36 - TEXT 38
37 - PKZ 46
38 - TWA 54 EDITCODE J
39 - PROT 67

Explanations:

In this example it is positioned with a key in the file 'CPGWRK' and a list (program catalogue) is
given out on the printer. In case of 'End of File' (switch EF) or in case of a new record type the
program is terminated.

Example B02, coded in a move up-to-date style:

By application of the CPG4 tools the coding can be shortened substantially. The printing output is program
externally developed and maintained, file in and output structures are inserted at compilation time from the
Data Dictionary.

The remaining coding:

 1 - OPTIONS BATCH TITEL Programmkatalog PHASE BSPB02;
 2 - FILE PRINTER
 3 - FILE CPGWRK INPUT
 - -D;
 4 - KEY 14
 - -I;
 5 - FILE CPGWRK DD
 - -C;
 6 - LIST BSPB02 SECTION KOPF
 7 - KEY = '01 '
 8 - DO UNTIL CPGFRC = 'EF'
 9 - KEY READ CPGWRK
10 - IF CPGFRC >< 'EF' AND SA <= KEY
11 - LIST BSPB02 SECTION DATEN
12 - ENDIF
13 - ENDDO

CPG2 Programmer’s
Reference Manual

Page 246

Example B03 : Loading records from the reader in a KSDS file. 8620

 - OPTIONS BATCH TITEL Load#CPGKSD PHASE BSPB03;

 - FILES READER PRINTER
 - FILE CPGKSD OUTPUT

 - -D
 - STRICH 80

 - -I
 - FILE READER
 - 1 20 KEY
 - 21 80 DATEN

 - -C
 - FILL '-' STRICH
 - EXCPT KOPF
 - DO UNTIL CPGFRC = 'EF'
 - READ READER
 - IF CPGFRC >< 'EF'
 - EXCPT SAETZE
 - ENDIF
 - ENDDO

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 18 'CPGKSD NEW RECORDS'
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 2 KOPF
 - STRICH 80
 - FILE PRINTER SPACE # 2 KOPF
 - 3 'KEY'
 - 26 'DATA'
 - FILE PRINTER SPACE # 1 SAETZE
 - KEY 20
 - DATEN 81
 - FILE CPGKSD ADD SAETZE
 - DATEN 80
 - KEY 20

Explanations:

In the example above, cards are read from a reader and transferred in the KSDS file 'CPGKSD'. The read
records are added sequentially with 'ADD', that means if records exist in the file, new records are inserted
into the file.

FILE CPGKSD OUTPUT in the Files Division declares the file as output file. The output is sequential. With
the sequential adding the records must exist in ascending record sequence. While the loading of the file a
log is printed on the file 'PRINTER' at the same time.

CPG2 Programmer’s
Reference Manual

Page 247

Example B04 : Copy records from the CPGWRK

into a KSDS file. 8630

 - OPTIONS PHASE BSPB04
 - TITEL Copy#KSDS#to#KSDS
 - BATCH
 - END

 - FILES READER PRINTER
 - FILE CPGWRK INPUT
 - FILE CPGKSD OUTPUT

 - -D
 - EC 2
 - STRICH 80

 - -I
 - FILE READER
 - 1 2 SA
 - 1 14 KEYVL
 - FILE CPGWRK
 - 1 14 KEY
 - 15 100 SATZ

 - -C
 - FILL '-' STRICH
 - DO WHILE EC >< 'EF'
 - EC = ' '
 - READ READER
 - IF CONDITION EOF
 - EC = 'EF'
 - ELSE
 - EXCPT KOPF
 - KEYVL SETLL CPGWRK
 - DO WHILE EC = ' '
 - KEYVL READ CPGWRK
 - IF CONDITION EOF
 - EC = 'EF'
 - ELSE
 - IF KEY = SA
 - EXCPT DATEN
 - ELSE
 - EC = 'SA'
 - ENDIF
 - ENDIF
 - ENDDO
 - ENDIF
 - ENDDO

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 12 'COPY RECORDS'
 - 34 'FROM CPGWRK TO CPGKSD'
 - 46 'RECORD TYPE'
 - SA 53
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 2 KOPF
 - STRICH 80

CPG2 Programmer’s
Reference Manual

Page 248

 - FILE PRINTER SPACE # 2 KOPF
 - 3 'KEY'
 - 25 'SATZ'
 - FILE PRINTER SPACE # 1 DATEN
 - KEY 14
 - SATZ 107
 - FILE CPGKSD ADD DATEN
 - KEY 14
 - SATZ 106

Explanations:

In the example above, records from the 'CPGWRK' are copied sequentially into a KSDS file. The records are
transferred with 'ADD' into the KSDS file. From the file 'READER', header cards are read in, which indicate
the record types to be copied. On the file 'PRINTER' a log is printed.

Example B05 : Direct update of records in a KSDS fi le. 8640

 - OPTIONS BATCH TITEL Direct#Update PHASE BS PB05;

 - FILES READER PRINTER CPGKSD

 - -I
 - FILE READER
 - 1 20 KEY
 - 21 21 UPDKZ
 - FILE CPGKSD
 - 21 39 NAME

 - -C
 - EXCPT KOPF
 - DO UNTIL CPGFRC = 'EF'
 - READ READER
 - IF CPGFRC >< 'EF'
** - KEY CHAIN CPGKSD 99
 - EXCPT DATEN
 - ENDIF
 - ENDDO

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOP F
 - 24 'Modify records in CPGKSD'
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 2 KOP F
 - 3 'KEY'
 - 25 'NAME'
 - 42 'X'
 - FILE PRINTER SPACE # 1 DAT EN
 - KEY 20
 - NAME 40
 - UPDKZ 42
 - ON 99 # 43 '*** not found ***'
 - FILE CPGKSD ON NOT 99 DAT EN
 - NAME 59
 - UPDKZ 106

CPG2 Programmer’s
Reference Manual

Page 249

Explanations:

In this example records, which were read in from a card reader, are updated directly in a KSDS file. A log is
printed out on the printer.

** consider: A switch with the CHAIN must be indicated, if the internal field CPGFRC for the file Return

code is not queried in the program.

Example B06 : Sequential update of records in a KSD S file 8650

 - OPTIONS BATCH TITEL sequential#Update PHASE BSPB06;

 - FILE LISTE OUTPUT FIX 132 PRINTER
 - FILE CPGKSD

 - -I; FILE CPGKSD
 - 1 20 KEY
 - 1 40 SATZ

 - -C;
 - EXCPT KOPF
 - MOVEL '11' TO KEY
 - DO WHILE KEY = '11'
 - KEY READ CPGKSD
 - IF KEY = '11'
 - EXCPT SEQUPD
 - ENDIF
 - ENDDO

 - -O;
 - FILE LISTE SPACE # 2 SKIP 01 KOPF
 - 17 'SEQUENTIAL UPDATE'
 - 38 'OF RECORDS IN CPGKSD'
 - UDATE 70
 - UTIME 80

 - FILE LISTE SPACE # 1 SEQUPD
 - SATZ 40
 - 40 '*'

 - FILE CPGKSD SEQUPD
 - 40 '*'

Explanations:

In this example records are sequentially updated in a KSDS file and given out at the same time as list on the
printer.

Only the records are updated, which have the key '11'.

CPG2 Programmer’s
Reference Manual

Page 250

Example B07 : Delete records in a KSDS file sequent ially 8660

 - OPTIONS BATCH TITEL sequential#delete PHASE BSPB07;

 - FILES READER PRINTER CPGKSD

 - -D
 - EOF 2
 - -I
 - FILE READER
 - 1 2 SA
 - FILE CPGKSD
 - 1 20 KEY
 - 21 100 SATZ
 - -C
 - DO WHILE EOF >< 'ER'; * E OF READER
 - READ READER
 - IF CPGFRC = 'EF'
 - EOF = 'ER'
 - ELSE
 - EXCPT KOPF
 - DO WHILE EOF >< 'ED'; * E OF CPGKSD or
 - SA READ CPGKSD; * e nd of the record key
 - IF CPGFRC = 'EF'
 - RANDOM CPGKSD
 - EOF = 'ED'
 - ELSE
 - IF KEY = SA
 - EXCPT DELETE
 - ELSE
 - RANDOM CPGKSD
 - EOF = 'ED'
 - ENDIF
 - ENDIF
 - ENDDO
 - FILL ' ' EOF
 - ENDIF
 - ENDDO
 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOP F
 - 24 'Delete Records in CPGKSD'
 - 36 'RECORD TYPE'
 - SA 39
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 2 KOP F
 - 3 'KEY'
 - 25 'DATA'
 - FILE PRINTER SPACE # 1 DEL ETE
 - KEY 20
 - SATZ 101
 - FILE CPGKSD DEL DEL ETE

Explanations:

In this example records are sequentially deleted in a KSDS file and a log is printed on the printer.

CPG2 Programmer’s
Reference Manual

Page 251

Example B08 : Direct delete of records in a KSDS fi le 8670

 - OPTIONS BATCH TITEL direct#delete PHASE B SPB08;

 - FILES READER PRINTER CPGKSD

 - -D
 - EOF 2

 - -I
 - FILE READER
 - 1 20 KEY
 - FILE CPGKSD
 - 21 39 NAME

 - -C
 - EXCPT KOPF
 - DO WHILE CPGFRC = ' '
 - READ READER
 - IF CPGFRC = ' '
 - KEY CHAIN CPGKSD 99
 - EXCPT DELETE
 - ENDIF
 - ENDDO

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 16 'Direct delete of'
 - 34 'records in CPGKSD'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 2 KOPF
 - 3 'KEY'
 - 25 'NAME'

 - FILE PRINTER SPACE # 1 DELETE
 - KEY 20
 - NAME 40
 - ON 99 # 43 '*** not found ***'

 - FILE CPGKSD DELETE ON NOT 99 DELETE

Explanations:

Records in a KSDS file are deleted directly. A log is output on the printer.

CPG2 Programmer’s
Reference Manual

Page 252

Example B09 : List program catalogue backwards 8680

 - OPTIONS BATCH TITEL catalogue#backwards PHAS E BSPB09;
 - FILES PRINTER CPGWRK
 - -D; OC 2
 - STRICH 80
 - -I; FILE CPGWRK; * DD - take fields from th e Data Dictionary
 - *
 - 1 2 SA
 - 3 10 PNAME
 - 11 14 TRANID
 - 15 24 PROT
 - 25 290 TWA
 - 30 49 TEXT
 - 50 52 PKZ
 - -C; FILL '-' STRICH
 - EXCPT KOPF
 - '02' READB CPGWRK; * The record must exist!
 - DO WHILE OC = ' '
 - '01' READ-BACK CPGWRK; * Last 01 rec ord is read
 - IF CPGFRC = 'EF'
 - OC = 'EF'
 - ELSE
 - IF SA = '01'
 - EXCPT RECORD
 - ELSE
 - OC = 'ED'
 - ENDIF
 - ENDIF
 - ENDDO
 - -O
 - FILE PRINTER SPACE # 1 SKIP 01 KOPF
 - 17 'Program catalogue'
 - 27 'backwards'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 2 KOPF
 - STRICH 80

 - FILE PRINTER SPACE # 2 KOPF
 - 22 'Programm TRID Text'
 - 67 'PKZ TWA Protection'

 - FILE PRINTER SPACE # 1 RECORD
 - PNAME 8
 - TRANID 15
 - TEXT 38
 - PKZ 46
 - TWA 54 EDIT J
 - PROT 67

Explanations:

 In a program catalogue it will be read backwards (READB) and a log on the
 printer is output.

CPG2 Programmer’s
Reference Manual

Page 253

Example B10 : Copy records from the card reader int o an

ESDS file 8690

 - OPTIONS BATCH TITEL Copy#Reader#->#ESDS PH ASE BSPB10;

 - FILES READER CPGESD

 - -I; FILE READER; 1 80 SATZ

 - -C; DO LOOP
 - READ READER
 - ON EOF BREAK
 - EXCPT
 - ENDDO

 - -O; FILE CPGESD ADD; SATZ 80

Explanations:

In this example records are copied from a card reader into a ESDS file. The records are added with 'ADD' to
the ESDS file.

If records already exist in the ESDS file, then the new records are added at the end of the file.

Example B11 : Printing of an ESDS file 8700

 - OPTIONS BATCH TITEL ESDS#print PHASE BSPB1 1;

 - FILES CPGESD PRINTER

 - -D; COUNT 5 0
 - KEY 4
 - OC 2

 - -I; FILE CPGESD
 - 1 80 SATZ

 - -C; EXCPT KOPF
 - FILL X'00' KEY
 - DO WHILE CPGFRC = ' '
 - KEY READ CPGESD
 - IF CPGFRC = 'EF'
 - EXCPT SUM
 - ELSE
 - COUNT = COUNT + 1
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 19 'Records from CPGESD'

CPG2 Programmer’s
Reference Manual

Page 254

 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80
 - FILE PRINTER SPACE 2 1 SUM
 - 21 '*** Number of records'
 - COUNT 23 EDITCODE Z

Explanations:

In the example above an ESDS file is read and output on the printer.

The processing begins with the first record of the file (FILL X'00' to KEY).

Example B12 : Sequential update of an ESDS file 871 0

 - OPTIONS BATCH TITEL ESDS#seq#update PHASE BSPB12;

 - FILES CPGESD PRINTER

 - -D; COUNT 5 0
 - KEY 4
 - OC 2

 - -I; FILE CPGESD
 - 1 80 SATZ

 - -C; EXCPT KOPF
 - FILL X'00' KEY
 - DO WHILE CPGFRC = ' '
 - KEY READ CPGESD
 - IF CPGFRC = 'EF'
 - EXCPT SUM
 - ELSE
 - COUNT = COUNT + 1
 - EXCPT RECORDS
 - ENDIF
 - ENDDO

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 17 'Records from CPGESD'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80

 - FILE PRINTER SPACE 2 1 SUM
 - 17 '*** Number of records'
 - COUNT 23 EDITCODE Z

 - FILE CPGESD RECORDS
 - 40 '<--- SEQ.UPD --->'

CPG2 Programmer’s
Reference Manual

Page 255

Explanations:

In the example above records are updated sequentially in an ESDS file and output as list on the printer at
the same time.
As unit of the file 'ESDS' must be entered in the Data Dictionary.
The processing begins with the first record of the file.

Example B13 : Direct and sequential processing of

an ESDS File 8720

 - OPTIONS BATCH TITEL ESDS processing PHASE BSPB13;
 - FILES CPGESD PRINTER
 - -D
 - COUNT 5 0; * Counter
 - KEY 4; * Key (RBA)
 - KEYS 99 * 4; * Key-(RBA)-A rray
 - OC 2; * Operation c ode
 - X 3 0; * Array index
 - -I
 - FILE CPGESD
 - 1 80 SATZ
 - -C
 - EXCPT KOPF
 - FILL X'00' KEY
 - DO UNTIL X = 99 OR
 - UNTIL CPGFRC = 'EF'
 - KEY READ CPGESD
 - IF CPGFRC >< 'EF'
 - X = X + 1
 - KEYS(X) = CPGK01
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - EXCPT SUMME
 - RANDOM CPGESD
 - DO 5 TIMES WITH X
 - KEY = KEYS(X)
 - KEY CHAIN CPGESD 11
 - EXCPT UPDESD
 - END
 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 17 'Records from CPGESD'
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80
 - 93 'sequential'
 - FILE PRINTER SPACE 2 1 SUM
 - 17 '*** Number of records'
 - X 23 EDIT Z
 - FILE PRINTER SPACE # 1 UPDESD
 - SATZ 80
 - 93 'direct '
 - ON 11 # 110 'not found '
 - FILE CPGESD UPDESD
 - 20 '<<< direct >>> '

CPG2 Programmer’s
Reference Manual

Page 256

Explanations:

Here an ESDS file is processed both directly ('CHAIN') and sequentially. ('READ'). By the instruction
'RANDOM' it is switched from the sequentially processing to the direct processing, at the same time a log on
the file 'PRINTER' is printed. The direct access may only take place with a valid relative byte address. In this
example the relative byte addresses were stored with seq. Read in the array KEYS.

Example B14 : Printing of a RRDS file 8730

 - OPTIONS BATCH TITEL RRDS#print PHASE BSPB14 ;

 - FILES CPGRRT PRINTER

 - -D
 - COUNT 5 0
 - KEYN 9 0
 - OC 2

 - -I
 - FILE CPGRRT
 - 1 80 SATZ

 - -C
 - EXCPT KOPF
 - KEYN = 1
 - DO WHILE CPGFRC = ' '
 - KEYN READ CPGRRT
 - IF CPGFRC = ' '
 - COUNT = COUNT + 1
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - EXCPT SUM

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 17 'Records from CPGRRT'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80

 - FILE PRINTER SPACE 2 1 SUM
 - 17 '*** Number of records'
 - COUNT 23

Explanations:

In the example above a RRDS file is read and output on the printer.

The processing begins with the first record of the file.

CPG2 Programmer’s
Reference Manual

Page 257

Example B15 : Processing a RRDS file directly 8740

 - OPTIONS BATCH TITEL RRDS#direct PHASE BSPB 15;

 - FILES READER PRINTER CPGRRT

 - DATA DIVISION
 - COUNT 5 0; * Counter
 - INFO 14; * Info for Du plicate Record
 - SERVICE 7; * Text field for service

 - INPUT DIVISION
 - FILE READER
 - 1 5 0 X; * Relative re cord number
 - 6 6 OC; * Operation c ode
 - 1 20 FELD
 - FILE CPGRRT
 - 1 80 SATZ

 - PROCEDURE DIVISION
 - EXCPT KOPF
 - DO UNTIL OC = 'E'; * Up to End o f File
 - READ READER
 - IF CPGFRC = 'EF'
 - MOVE 'E' TO OC; * Termination criterium of the loop
 - ELSE
 - X CHAIN CPGRRT 11
 - COUNT = COUNT + 1
 - MOVEL X TO SATZ
 - MOVE FELD TO SATZ
 - EVALUATE
 - WHEN OC = '*'; *------ Servi ce: Modify -----*
 - SERVICE = 'UPDATE'
 - EXCPT RRTUPD
 - WHEN OC = '+'; *------ Servi ce: Add -*
 - SERVICE = 'WRITE '
 - EXCPT RRTADD
 - WHEN OC = '-'; *------ Servi ce: Delete ----*
 - SERVICE = 'DELETE'
 - EXCPT RRTDEL
 - END-EVALUATE
 - IF CPGFRC = 'D'
 - INFO = 'double record'
 - ENDIF
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - EXCPT SUM

 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOP F
 - 21 'CPGRRT DIRECT CHAIN, '
 - 42 'UPDAT, WRITE, DELET '
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 1 REC ORDS
 - SATZ 80
 - ON 11 # 90 'not found'

CPG2 Programmer’s
Reference Manual

Page 258

 - SERVICE 100

 - INFO 120 BLANK-AFTER-OUTPUT
 - X 125 EDITCODE Z

 - FILE PRINTER SPACE 2 1 SUM
 - 21 '*** Number of records'
 - COUNT 23 EDIT Z

 - FILE CPGRRT ON NOT 11 RRT UPD
 - SATZ 80

 - FILE CPGRRT ADD RRT ADD
 - SATZ 80

 - FILE CPGRRT DEL ON NOT 11 RRT DEL

Example B16 : Load an RRDS file from the card reade r 8750

 - OPTIONS BATCH TITEL Load#RRDS#from#card#rea der PHASE BSPB16;

 - FILES READER PRINTER CPGRRT

 - INPUT DIVISION

 - FILE READER
 - 1 80 SATZ

 - PROCEDURE DIVISION

 - EXCPT KOPF
 - DO LOOP
 - READ READER
 - ON EOF BREAK
 - EXCPT RECORDS
 - ENDDO
 - EXCPT ENDE

 - OUTPUT DIVISION

 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 23 'Load CPGRRT from Reader'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 1 RECOR DS
 - SATZ 80

 - FILE PRINTER SPACE 2 1 END
 - 17 '*** End *** '

 - FILE CPGRRT ADD RECOR DS
 - SATZ 80

Explanations:

In the example above cards are read from a card reader and transferred into the RRDS file 'CPGRRT'. The
read records are added with 'ADD', that means if already records are existing on the file, new records are
added at the end of the file. With the loading of the file a log is printed at the same time on the file
'PRINTER'.

CPG2 Programmer’s
Reference Manual

Page 259

Example B17 : Sequential update of a RRDS file 8760

 - OPTIONS BATCH TITEL sequential#UPD PHASE B SPB17;

 - FILES CPGRRT PRINTER

 - -D;
 - COUNT 5 0
 - OC 2
 - RECN 3 0
 - -I;
 - FILE CPGRRT
 - 1 80 SATZ

 - -C;
 - EXCPT KOPF
 - RECN = 1
 - DO WHILE CPGFRC = ' '
 - RECN READ CPGRRT
 - IF CPGFRC = ' '
 - COUNT = COUNT + 1
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - EXCPT SUM

 - -O;
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 19 'Records from CPGRRT'
 - UDATE 70
 - UTIME 80

 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80

 - FILE PRINTER SPACE 2 1 SUM
 - 21 '*** Number of records'
 - COUNT 23 EDIT Z

 - FILE CPGRRT RECORDS
 - 40 '<--- SEQ.UPD --->'

Explanations:

In the example above records are sequentially updated in a RRDS file and output as list on the printer at the
same time.

The processing begins with the first record of the file.

CPG2 Programmer’s
Reference Manual

Page 260

Example B18 : File with OPEN in the program 8770

 - OPTIONS BATCH TITEL Entry#No#open PHASE BS PB18;

 - FILE CPGESD INP VAR 8100 ESDS NO OPEN
 - FILE PRINTER

 - -D
 - COUNT 5 0
 - KEY 4
 - OC 2
 - -I
 - FILE CPGESD
 - 1 80 SATZ

 - -C
 - IF CONDITION U1; * UPSI 1
 - OPEN CPGESD
 - ENDIF
 - IF CPGFRC = ' '; * File Return Code for OPEN
 - EXCPT KOPF
 - FILL X'00' KEY
 - DO WHILE CPGFRC = ' '
 - KEY READ CPGESD
 - IF CPGFRC = ' '
 - COUNT = COUNT + 1
 - EXCPT RECORDS
 - ENDIF
 - ENDDO
 - IF CONDITION U1; * UPSI 1
 - CLOSE CPGESD
 - ENDIF
 - EXCPT SUM
 - ELSE; * Error with OPEN
 - IF CPGFRC = 'EF'; * Empty file
 - EXCPT EMPTY-FILE; * Message on the printer
 - ELSE
 - EXCPT OPEN-ERROR; * Message on the printer
 - END
 - ENDIF
 - -O
 - FILE PRINTER SPACE # 2 SKIP 01 KOPF
 - 19 'Records from CPGESD'
 - UDATE 70
 - UTIME 80
 - FILE PRINTER SPACE # 2 SKIP 01 EMPTY-FILE
 - 20 'File CPGESD is empty'
 - FILE PRINTER SPACE # 2 SKIP 01 OPEN-ERROR
 - 24 'OPEN-error with CPGESD:'
 - CPGFRC 27
 - FILE PRINTER SPACE # 1 RECORDS
 - SATZ 80
 - FILE PRINTER SPACE 2 1 SUM
 - 21 '*** Number of records'
 - COUNT 23 EDITCODE Z

CPG2 Programmer’s
Reference Manual

Page 261

Explanations:

The file CPGESD is declared with NO OPEN in the Files Division.
Thus the file will not be automatically opened, but can be directly opened with the instruction OPEN. In this
example the OPEN is executed only if the switch U1 (= UPSI 1) is set. If necessary, OPEN sets a switch and
the File Return Code CPGFRC like all file operations, even if the file is empty. (Then the switch EF is set
additionally). With the instruction CLOSE the file can be closed at the end of the processing.

Example B19 : Output on puncher 8780

 - OPTIONS BATCH TITEL Output#on#Puncher PHAS E BSPB19;

 - FILES READER PUNCHER

 - -I
 - FILE READER
 - 1 80 SATZ

 - -C
 - DO LOOP
 - READ READER
 - ON EOF BREAK
 - EXCPT
 - ENDDO

 - -O
 - FILE PUNCHER
 - SATZ 80

Example B20 : Copy disk tape 8790

 - OPTIONS BATCH TITEL Copy#Disk tape PHASE B SPB20;

 - FILE IJSYS04 INP FIX # 80 DISK
 - FILE TAPE OUT FIX 1600 80 TAPE

 - INPUT DIVISION
 - FILE IJSYS04
 - 1 80 SATZ

 - PROCEDURE DIVISION
 - DO LOOP
 - READ IJSYS04
 - ON EOF BREAK
 - EXCPT
 - ENDDO

 - OUTPUT DIVISION
 - FILE TAPE
 - SATZ 80

The '#' has to be entered for block size in the file description, if a disk file is not blocked.

CPG2 Programmer’s
Reference Manual

Page 262

Chapter Index

Contents 1000 2

Lattwein information 1010 4
Information: 4

Section 2 Service Functions 2000 5

Data Fields 2100 5

Field Names and Field Definitions 2110 5
Regulations for field names: 5

Arrays 2120 7
Array definition 7
Array Input / Output 7
Array and Screen 7
Array and record files / print output / field editing with EDIT - SELCT 7
Regulations for array names: 7
Processing arrays 8
Array with fixed index 8
Array with variable index 8
Array without index 8

CPG internal Fields 2130 9

Date and time 2134 12

Storage Types 2140 12

Alphanumerical Fields 2141 13

Numerical Fields 2142 13

Binary 2143 13

Logically packed Fields 2144 13

Unpacked numerical Field 2145 14

Screen input Fields 2150 15

Temporary Storing of Data 2160 15
Temporary storing of data in the Transaction Work Area (not recommended!). 15
Temporary storing of data in the terminal user area 16
Temporary storing of data in the CSA. (not recommended!). 16
Temporary storing of data on the screen. (not recommended!). 16
Temporary storing and temporary storage queuing see chapter 2190. 17
Temporary storing of data on transient data. 17
Temporary storing in the common area (for command level programs). 17

CPG2 Programmer’s
Reference Manual

Page 263

Temporary Storage Usage 2190 17

Temporary Storage Queuing 2195 18

Simulation of the Queuing 2198 20

Flow Chart 2240 20

List control 2245 22

Programmer Check List 2246 22

Cross Reference 2247 23

Indicators 2260 23

File Processing 2300 25

File name 2301 25

Keys 2304 25

Sequential or random access 2306 26

File Operations in the sequential access 2307 26

VSAM Alternate Indices 2315 27

VSAM-ESDS/RRDS 2316 27

VSAM Files in entry sequence 2317 27

Data View Processing 2340 27

Data View Definition 2341 28

Realistation of a Data View 2342 28

Processing of Data Views 2343 28

Programming Assistance 2400 29

Decision Tables 2410 29

Field Edition 2420 30

Field Edition with TYPE 2425 31

Structured Programming 2450 32

AND linking 2453 33

BREAK Operation 2455 33

CPG2 Programmer’s
Reference Manual

Page 264

CONTINUE Operation 2457 33

DO Operation 2460 33

DO UNTIL Operation 2461 34

DO WHILE Operation 2462 34

ELSE Operation 2463 34

END Operation 2464 34

EVALUATE Operation 2465 34

IF operation 2466 35

IF CONDITION 2467 35

OR Connection 2468 35

WHEN 2470 35

WHEN OTHER 2471 36

Boolean Connection of IF, DO and WHEN Operations 2475 36

Data Structures 2477 37

Data Structure Subfield Descriptions 2480 37

TWA Overlay 2485 38

Selector Pen Selection 2490 39

Cursor Selection 2495 39

Optimizing of the TWA Size 2500 39

Rules for the pseudo conversational Programming 2550 40

Data Dictionary in the Files Division 2605 40

Data Dictionary in the Data Division 2610 40

Data Dictionary in the Input Division 2620 41

Data Dictionary in the Input Division with Field Queries 2625 42

Data Dictionary in the Output Division 2630 42

Reference Structures at Data Dictionary Processing 2640 43

Data Dictionary and Optimizing Function of the CPG 2670 44

CPG2 Programmer’s
Reference Manual

Page 265

Data Dictionary Lay Out in the Program List 2680 44

Test debugging 2800 45

QDF Quick Debugging Facility 2810 45

Special Terminal Dump 2830 45

Restrictions for the OPTIONS Parameter BIG and 12K 2920 47

Restrictions for modules without Dataset Logic 2930 47

Section 3 Program Design 3000 47

Syntax 3010 47
Coding begins up from position 1 47
Program code begins up from column 8 48

Mixed using of RPG like format and CPG2 format 3020 48

Program Structure 3030 48

OPTIONS 3300 49

Options and Standard Header CPGSTH 3350 55

Files 3400 57

Shortened Syntax 3450 61

Extensions for the Batch Processing 3455 62

Data Division (Working Storage Section) 3500 62

TWA Overlay (Field redefinition) 3510 63

Overlay with ORG 3520 63

Data Dictionary in the Data Division 3530 64

External Fields (key word EXT) 3540 65

Adjustment on Word Borders 3550 65

Forms Division (printer control) 3600 65

Input Division (Syntax) 3700 66

Record Description 3710 66

Field description 3750 70

Examples for Input Descriptions: 3790 71

CPG2 Programmer’s
Reference Manual

Page 266

Operations in the Procedure Division 3800 72

Syntax 3810 74

Output Division 3900 76

Data Dictionary in the Output Division 3905 76

Record Description for EXCPT Outputs (files of all type) 3910 77

Record Description for Field Processings 3915 78

Field Descriptions 3920 79

Data formatting Attribute Bytes for 3270 3950 81

Alphanumeric Data in the TWA 3952 81

Numerical Data 3954 82

Patterns 3956 82

Suppression of zeros 3957 82

Insertion Signs 3958 83

Characterisation of negative Amounts 3959 83

Insertion of leading Blanks 3960 83

Length of the processed Data 3961 83

Examples for Patterns 3963 83

Arrays 3965 84

Overlapped fields 3967 84

Field editing 3969 84

Protection Star writing 3970 85

Flowing Monetary Signs 3972 85
= assigning values 86
+ addition 87
- Subtraction 87
* Multiplication 88
/ Division 88
ACCEPT Data record read directly 88
AFOOT Calculate the average of an array 88
AVERAGE Calculate the average of an array 89
BREAK Terminate a loop 89
BEGSR Start Subroutine (not for QPG) 90
CALL Call of any subroutines 90

CPG2 Programmer’s
Reference Manual

Page 267

CHAIN Read a record in random processing mode 91
CHANG(E) Exchange the contents of two fields 91
CHECK Check file status 92
CHECK-VAR Check file status variable 92
CLEAR Clear data to zero or blank 92
CLOSE Close file 93
COM-REG Communication region 93
COMRG Communication region 93
COMPUTE Calculation of formulas (QPG only) 94
CONT(INUE) Continuing a loop 95
CONVERT Converting an alphanumeric field 96
CONVT Converting an alphanumeric field 96
DEBUG Program testing aid 97
DELC Delete a character 97
DELET(E) Delete a record 98
DEQ(UEUE) Dequeue a program (not for QPG) 99
DISPLAY Console message 99
DO Perform calculation specifications within a DO loop 99
DSPLY Output to the operator console 101
EDIT Edit alphanumeric field 101
ELIM(INATE) Replace a selected character with a blank 102
ELSE Indication of a program block in the IF instruction 102
END End of a program block 102
END-EVALUATE End of an EVALUATE block 103
ENDDO End of a DO-block 103
ENDIF End of an IF block 103
ENDEV End of an EVALUATE block (QPG only) 103
ENDPR Terminate a program (QPG only) 103
ENDSR End internal program subroutine code (not for QPG) 103
ENQ(UEUE) Enqueue a part of a program (not for QPG) 104
EVALUATE Multiple alternative 105
EXCPT Execute output specifications 105
EXHM Execute HL1-Module 106
EXHM-VAR HL1-module processing (only for users of CPG3) 107
EXITD Start other transaction with data transfer 107
EXITI Call another program per interval control 108
EXITP Calling another program (not for QPG) 109
EXITP-VAR Call up an external program variable (not for QPG) 110
EXITS Send a program (later) to another terminal (not for QPG) 110
EXIT-TRANS Call of the next transaction 111
EXITT Call of the next transaction 111
EXITT-VAR Variable EXITT (not for QPG) 111
EXIT-SEND Transfer of the program (later) to another terminal (not for QPG) 112
EXPR Execution of an external program (not for QPG) 112
EXPR-VAR Execution of an external program (not for QPG) 113
EXSR Execution of a subroutine (not for QPG) 113
FILL Fill a field with a specified character 114
FIND Searching in a table 114
GETCHANNEL Get higher Storage 115
GETHS Get higher Storage 115
GET-UPDATE Direct data reading 115

CPG2 Programmer’s
Reference Manual

Page 268

GO (TO) Transfer processing (not for QPG) 116
IF Conditional processing 116
IF-DAT Comparing date fields 118
IF-DATI Compare date fields in the ISO-format 119
IF-DATK Compare date fields with calendar day in ISO-format (not for QPG) 120
JLB Justify left, and fill up with blanks 121
JRB Justify right and fill up with blanks 121
JRC Justify right and fill with specified character 122
JRZ Justify right and fill up with zeros 122
LEFT-SHIFT Justify left, blanks to the rear 123
LIST Output of externally described lists 123
LIST-VAR Variable programming of the LIST command 124
LOADT Load the contents of a screen 124
LOADT-VAR Load the contents of a screen variable 124
LOKUP Look up an array for data 125
MAP QSF Map input transfer 126
MAP-VAR QSF Map -instruction variable 127
MAPD QSF Map Dialog 127
MAPD-VAR QSF Map variable dialog 128
MAPI QSF Map Input 128
MAPI-VAR QSF Map Variable Input instruction 129
MAPO QSF Map Output 129
MAPO-VAR QSF Map Output variable 130
MAPP QSF Map Output on a printer 130
MAPP-VAR QSF Map Variable MAPP instruction 130
MOVE Transfer right-adjusted 131
MOVE (R) Transfer right-adjusted 131
MOVEA Move array 132
MOVEL Move data left-adjusted 133
MOVEN transfer alphanumeric into numeric field 133
MOVEV variable MOVE-Operation 135
MOVE-ARRAY array transfers 136
MOVE-LEFT left adjusted field transfer 136
MOVE-REST remainder of a division 136
MOVE-RIGHT right adjusted field transfer 136
MVR move remainder 136
OPEN Open file 137
PARAMETER Parameter transfer to the CALL (not for QPG) 138
PARM Parameter transfer to the CALL (not for QPG) 138
PERFORM Execute a subroutine (not for QPG) 138
PROG(RAM) call QPG program 138
PROG-VAR call QPG program variable 139
PROT(ECTION) protection code has to be given out (see manual CPG3) 139
PURGE Delete temporary storage queue 140
RANDOM Reset file to random processing 140
READ read a file sequentially 140
READ-BACK Read file backwards 141
READB Read file backwards 141
READB-PAGE Read file backwards 142
READI Read Segment of an input file 142
READP Read records of a disc-file into a page 143

CPG2 Programmer’s
Reference Manual

Page 269

RECEIVE transaction-oriented Read of a QSF map 144
REPLACE replace a character by another 144
REPLC Replace a character by another 144
RIGHT Shift alpha field right-adjusted, blanks in front 144
RIGHT-CHAR Shift alpha field right-adjusted, character in front 144
RIGHT-ZERO Shift alpha field right-adjusted, zeros in front 144
RNDOM Reset file to random processing 145
ROLL Roll array contents up one element 145
ROLLB Shift an array backwards 146
ROLL-BACK Shift an array backwards 146
SAVET Save screen contents 146
SAVET-VAR Save screen contents variable 146
SCAN searching for a character sequence in an alpha field 147
SCREENDUMP debugging aid special terminaldump 148
SDUMP debugging aid special terminaldump 148
SELCT field selection 148
SELECT field selection 148
SEND send a QSF-Map to a screen 149
SET-LIMIT set pointer to a record of a file 149
SETLL set pointer to a record of a file 149
SORT(A) Sort an array 149
SQRT calculate square root 150
SQUARE-ROOT calculate square root 150
SYNCP (OINT) Define a synchronization point (not for QPG) 151
TAG Define a label 152
TEST-FIELD check field for numeric characters 152
TESTF check field for numeric characters 152
TIME set time 153
TWA-LOAD Read private TWA from Temporary Storage 153
TWALD Read private TWA from Temporary Storage 153
TWA-SAVE Save private TWA onto Temporary Storage 154
TWASV Save TWA onto Temporary Storage 154
TWASV-VAR TWA on temporary storage rescue 155
UCTRAN translating into uppercase letters 155
UCTRN translating into uppercase letters 155
UPDAT(E) modify data record in a file 156
WAIT waiting 156
WHEN indication of a condition 157
WHEN-DAT(E) date query standard format TTMMJJ in a condition 157
WHEN-DATI date query ISO format JJMMTT in a condition 157
WHEN OTHER indication of a condition 157
WRITE add data record to a file 157
XFOOT calculate the sum of an array 158

H L 1 5000 162

HL1 programming 5010 162

The data channel 5020 162

Data description 5030 163

CPG2 Programmer’s
Reference Manual

Page 270

HL1 Processing 5050 163

Peculiarities for the file processing with HL1 5060 164

Private HL1 Libraries 5070 164

HL1 Datasets 5080 165

Programming with HL1 Datasets 5090 166

HL1 Batch Programs 6300 169

Restrictions and Notes for the Batch Version 6310 171

Modules for Batch and Online Processing 6325 171

Process a HL1 Batch Program 6330 172

UPSI switches 6335 172

Error messages during the compilation 6900 173

Syntax errors 6910 173

Warnings 6920 177

Error Messages in the Assembly 6930 177

Error Messages for the Processing 6950 178

Error Messages during the Processing 6970 182

Tables, Operation codes 7000 186

Tables 7000 186

Overview of the Procedure Division 7000 186

Dummy Words 7010 190

Reserved Names 7015 190

CPG screen attributes 7020 191

CPG output Write Control Character 7030 192

Highest values for a CPG-program 7040 193

Temporary Storage of Data for CICS Users 7050 193

1. C W A Common Work Area 7050 193

2. T C T User Area 7055 194

CPG2 Programmer’s
Reference Manual

Page 271

3. Temporary Storage 7060 194

Edit Codes for numerical Fields 7070 195

Vocabulary 7200 196

Syntax Rules 7300 196

Syntax Rules 7304 199

Key words 7400 201

Key words in the Procedure Division 7410 201

Accessories 7500 202

Change CPG2 syntax into RPG like syntax 7520 202

Creation of a Data View 7530 203

Processing mode for the CPG2 User 7531 203

Processing mode for CPG3 Users 7532 204

CPG Compilation without IJSYS04 7540 204

CPG for ESA Command Level Programs without CRL 7550 205

Accessories 7570 206

SQL/DS 7570 206

Example 1: File Update (conversationally programmed) 8000 208

Example 2: File browse with READ PAGE 8010 210

Example 3: File modification program with UPDATE, WRITE 8015 212

Example 4 : File modification program with EXCPT 8017 214

Example 5: RRDS file with numeric key field 8020 216

Example 6: ESDS file 8025 217

Example 7 : Add in a ESDS file 8030 218

Example 8 a: Printing in the Line mode 8035 219
(outdated, today it is solved with CPG4 program externally) 219

Example 9: Field editing with EDIT 8040 221

Example 10: READ-BACK 8045 222

Example 11: Update VSAM variable record length 8050 223

CPG2 Programmer’s
Reference Manual

Page 272

Example 12: Cursor Stop (example is outdated!) 8051 224

Example 13: Temporary Storage Queuing 8060 224

Example 14: Variable Cursor position, e.g. with error message 8065 226

Examples for the operation FIND: 8070 226

Example 16: Display of a table for selective criterion 8071 227

Example 17: Orders display 8072 229

Example 18: Variable map name 8075 230

Example 19: TWA-SAVE and TWA-LOAD 8080 231

Example 20: Reading of files with record length greater 8K 8090 231

Example 21a: Program for the file maintenance, conversational 232

(outdated with switches and GOTO branches) 8101 232

Example 21b: Program for the file maintenance, pseudo Conv. 8110 233

Example 22a: Convert fields with CONVERT 8120 235

Example 22b: Converting of time informations with CONVERT 8125 236

Example 23: Storing in the Common Area (CPGCOM) 8130 237

Example 24: Sequential processing of record types (segments) 8140 238

Example 25: Direct processing of record types with segments 8145 239

Example 26: Logically connected IF queries 8150 240

Example 27: Upper and lower case printing in 241

pseudo conversational application 8160 241

Example B01 : Reader, Printer and overflow control 8600 243

Example B02 : Program catalogue CPGWRK 8610 244

Example B03 : Loading records from the reader in a KSDS file. 8620 246

Example B04 : Copy records from the CPGWRK 247

into a KSDS file. 8630 247

Example B05 : Direct update of records in a KSDS file. 8640 248

Example B06 : Sequential update of records in a KSDS file 8650 249

CPG2 Programmer’s
Reference Manual

Page 273

Example B07 : Delete records in a KSDS file sequentially 8660 250

Example B08 : Direct delete of records in a KSDS file 8670 251

Example B09 : List program catalogue backwards 8680 252

Example B10 : Copy records from the card reader into an 253

ESDS file 8690 253

Example B11 : Printing of an ESDS file 8700 253

Example B12 : Sequential update of an ESDS file 8710 254

Example B13 : Direct and sequential processing of 255

an ESDS File 8720 255

Example B14 : Printing of a RRDS file 8730 256

Example B15 : Processing a RRDS file directly 8740 257

Example B16 : Load an RRDS file from the card reader 8750 258

Example B17 : Sequential update of a RRDS file 8760 259

Example B18 : File with OPEN in the program 8770 260

Example B19 : Output on puncher 8780 261

Example B20 : Copy disk tape 8790 261

